Establishment of Nitrogen-Fixing Frankia, Arbuscular Mycorrhizal Fungi, and Their Effects on Alder (Alnus glutinosa L.) Growth in Post-Mining Heap Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.1.1. Treatments and Experimental Design
2.1.2. Harvest and Post-Harvest Processing
2.2. Experiment 2
2.2.1. Treatments and Experimental Design
2.2.2. Harvest and Post-Harvest Processing
2.3. Statistical Analyses
3. Results
3.1. Experiment 1
3.2. Experiment 2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bradshaw, A.D. Underlying principles of restoration. Can. J. Fish. Aquat. Sci. 1996, 53, 3–9. [Google Scholar] [CrossRef]
- Batterman, S.A.; Hedin, L.O.; van Breugel, M.; Ransijn, J.; Craven, D.J.; Hall, J.S. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 2013, 502, 224–227. [Google Scholar] [CrossRef]
- Brookshire, E.N.J.; Wurzburger, N.; Currey, B.; Menge, D.N.L.; Oatham, M.P.; Roberts, C. Symbiotic N fixation is sufficient to support net aboveground biomass accumulation in a humid tropical. Sci. Rep. 2019, 9, 7571. [Google Scholar] [CrossRef]
- Levy-Varon, J.H.; Batterman, S.A.; Medvigy, D.; Xu, X.; Hall, J.S.; van Breugel, M.; Hedin, L.O. Tropical carbon sink accelerated by symbiotic dinitrogen fixation. Nat. Commun. 2019, 10, 5637. [Google Scholar] [CrossRef]
- Kou-Giesbrecht, S.; Menge, D.N.L. Nitrogen-fixing trees increase soil nitrous oxide emissions: A meta-analysis. Ecology 2021, 102, e03415. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Woś, B.; Pająk, M.; Wanic, T.; Krzaklewski, W.; Chodak, M. The impact of alders (Alnus spp.) on the physico-chemical properties of technosols on a lignite combustion waste disposal site. Ecol. Eng. 2018, 120, 180–186. [Google Scholar] [CrossRef]
- Perakis, S.S.; Pett-Ridge, J.C. Nitrogen-fixing red alder trees tap rock-derived nutrients. Proc. Natl. Acad. Sci. USA 2019, 116, 5009–5014. [Google Scholar] [CrossRef]
- Sellstedt, A.; Richau, K.H. Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiol. Lett. 2013, 342, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Santi, C.; Bogusz, D.; Franche, C. Biological nitrogen fixation in non-legume plants. Ann. Bot. 2013, 111, 743–767. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.B.; Seefeldt, L.C.; Peters, J.W. Insights into nucleotide signal transduction in nitrogenase: Structure of an iron protein with MgADP bound. Biochemistry 2000, 39, 14745–14752. [Google Scholar] [CrossRef]
- Newsham, K.K.; Fitter, A.H.; Watkinson, A.R. Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J. Ecol. 1995, 83, 991. [Google Scholar] [CrossRef]
- Pfeffer, P.E.; Douds, D.D.; Bécard, G.; Shachar-Hill, Y. Carbon uptake and the metabolism and transport of lipids in and arbuscular mycorrhiza. Plant Physiol. 1999, 120, 587–598. [Google Scholar] [CrossRef]
- Bolan, N.S. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 1991, 34, 189–207. [Google Scholar] [CrossRef]
- Lekberg, Y.; Koide, R.T.; Rohr, J.R.; Aldrich-Wolfe, L.; Morton, J.B. Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J. Ecol. 2007, 95, 95–105. [Google Scholar] [CrossRef]
- Kivlin, S.N.; Emery, S.M.; Rudgers, J.A. Fungal symbionts alter plant responses to global change. Am. J. Bot. 2013, 100, 1445–1457. [Google Scholar] [CrossRef]
- Brear, E.; David, D.A.; Smith, P.M.C. Iron: An essential micronutrient for the legume-rhizobium symbiosis. Front. Plant Sci. 2013, 4, 359. [Google Scholar] [CrossRef]
- Larson, C.A.; Mirza, B.; Mazza Rodrigues, J.L.; Passy, S.I. Iron limitation effects on nitrogen-fixing organisms with possible implications for cyanobacterial blooms. FEMS Microbiol. Ecol. 2018, 94, fiy046. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberato, J.J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef]
- Hawkesford, M.J.; de Kok, L.J. Managing sulphur metabolism in plants. Plant Cell Environ. 2006, 29, 382–395. [Google Scholar] [CrossRef]
- Šourková, M.; Frouz, J.; Šantrůčková, H. Accumulation of carbon, nitrogen, and phosphorus during soil formation on alder spoil heaps after brown-coal mining, near Sokolov (Czech Republic). Geoderma 2005, 124, 203–214. [Google Scholar] [CrossRef]
- Frouz, J.; Prach, K.; Pižl, V.; Háněl, L. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur. J. Soil Biol. 2008, 44, 109–121. [Google Scholar] [CrossRef]
- Schüßler, A.; Walker, C. The Glomeromycota: A Species List with New Families and New Genera; The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University: Gloucester, UK, 2010. [Google Scholar]
- Koske, R.E.; Gemma, J.N. A modified procedure for staining roots to detect VA-mycorrhizas. Mycol. Res. 1989, 92, 486–488. [Google Scholar] [CrossRef]
- McGonigle, T.P.; Miller, M.H.; Evans, D.G.; Fairchild, G.L.; Swan, J.A. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. 2017. Available online: https://CRAN.R-project.org/package=vegan (accessed on 17 January 2017).
- Simpson, G.L. Permute: Functions for Generating Restricted Permutations of Data. 2022. Available online: https://cran.r-project.org/web/packages/permute/permute.pdf (accessed on 20 August 2024).
- Morales, M. Package ‘sciplot’: Scientific Graphing Functions for Factorial Designs; R Package Version 1.2-0; Montreal. 2022. Available online: https://cran.r-project.org/web/packages/sciplot/sciplot.pdf (accessed on 20 August 2024).
- Seeds, J.D.; Bishop, J.G. Low Frankia inoculation potentials in primary successional sites at Mount St. Helens, Washington, USA. Plant Soil 2009, 323, 225–233. [Google Scholar] [CrossRef]
- Pourhassan, N.; Wichard, T.; Roy, S.; Bellenger, J.P. Impact of elevated CO2 on metal homeostasis and the actinorhizal symbiosis in early successional alder shrubs. Environ. Exp. Bot. 2015, 109, 168–176. [Google Scholar] [CrossRef]
- Parker, M.A. Mutualism as a constraint on invasion success for legumes and rhizobia. Divers. Distrib. 2001, 7, 125–136. [Google Scholar] [CrossRef]
- Wheeler, C.T.; Tilak, M.; Scrimgeour, C.M.; Hooker, J.E.; Handley, L.L. Effects of symbiosis with Frankia and arbuscular mycorrhizal fungus on the natural abundance of 15N in four species of Casuarina. J. Exp. Bot. 2000, 51, 287–297. [Google Scholar] [CrossRef]
- Míguez-Montero, M.A.; Valentine, A.; Pérez-Fernández, M.A. Regulatory effect of phosphorus and nitrogen on nodulation and plant performance of leguminous shrubs. AoB PLANTS 2020, 12, plz047. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. The Nature and Properties of the Soil, 15th ed.; Pearson: New York, NY, USA, 2017. [Google Scholar]
pH | Conductivity | Nitrate (NO3−) | Iron (Fe) | Phosphate (PO4−) | |
---|---|---|---|---|---|
Young soil-Control | 8.03 ± 0.05 bc | 527 ± 35.4 a | 3.13 ± 0.46 c | 5.56 ± 0.02 b | 0.20 ± 0.03 b |
Young soil-AMF | 7.93 ± 0.11 c | 460 ± 18.2 bc | 2.50 ± 0.84 c | 5.56 ± 0.01 b | 0.19 ± 0.03 b |
Young soil-AMF+F | 8.06 ± 0.04 abc | 499 ± 16.8 ab | 2.79 ± 0.70 c | 6.26 ± 0.04 a | 0.24 ± 0.01 b |
Developed soil-Control | 8.10 ± 0.02 ab | 428 ± 11.1 c | 22.6 ± 2.02 a | 5.58 ± 0.05 b | 0.42 ± 0.04 a |
Developed soil-AMF | 8.19 ± 0.01 a | 417 ± 18.8 c | 13.3 ± 1.26 b | 5.49 ± 0.02 b | 0.38 ± 0.01 a |
Developed soil-AMF + F | 8.10 ± 0.02 ab | 455 ± 26.4 bc | 10.6 ± 0.84 b | 5.57 ± 0.16 b | 0.38 ± 0.02 a |
Soil (F1,36) | 7.80 (p < 0.01) | 11.4 (p < 0.01) | 186 (p < 0.001) | 18.6 (p < 0.001) | 82.5 (p < 0.001) |
Inoculation (F2,36) | 0.10 (ns) | 1.96 (ns) | 16.4 (p < 0.001) | 17.7 (p < 0.001) | 0.84 (ns) |
Soil × inoculation (F2,36) | 2.07 (ns) | 0.99 (ns) | 14.1 (p < 0.001) | 14.5 (p < 0.001) | 1.64 (ns) |
pH | Conductivity | |
---|---|---|
Young soil—Control | 7.88 ± 0.07 a | 773 ± 18.4 de |
Young soil—Ca | 8.06 ± 0.02 a | 807 ± 26.9 de |
Young soil—S | 7.79 ± 0.05 abc | 1533 ± 124 a |
Young soil—FeP | 7.85 ± 0.02 ab | 901 ± 56.1 cd |
Young soil—FePS | 7.44 ± 0.20 cd | 1472 ± 76.8 a |
Developed soil—Control | 7.31 ± 0.01 def | 620 ± 26.0 g |
Developed soil—Ca | 7.41 ± 0.07 cde | 719 ± 15.2 ef |
Developed soil—S | 7.13 ± 0.11 ef | 992 ± 25.1 c |
Developed soil—FeP | 7.54 ± 0.10 bcd | 755 ± 38.4 ef |
Developed soil—FePS | 6.98 ± 0.12 f | 1110 ± 25.0 b |
Soil (F1,30) | 45.7 (p < 0.001) | 76.1 (p < 0.001) |
Chemicals (F4,30) | 7.67 (p < 0.001) | 81.9 (p < 0.001) |
Soil × chemicals (F4,30) | 0.67 (ns) | 8.11 (p < 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchbauerová, L.; Ardestani, M.M.; Rydlová, J.; Veselá, H.; Frouz, J. Establishment of Nitrogen-Fixing Frankia, Arbuscular Mycorrhizal Fungi, and Their Effects on Alder (Alnus glutinosa L.) Growth in Post-Mining Heap Soils. Soil Syst. 2024, 8, 98. https://doi.org/10.3390/soilsystems8030098
Buchbauerová L, Ardestani MM, Rydlová J, Veselá H, Frouz J. Establishment of Nitrogen-Fixing Frankia, Arbuscular Mycorrhizal Fungi, and Their Effects on Alder (Alnus glutinosa L.) Growth in Post-Mining Heap Soils. Soil Systems. 2024; 8(3):98. https://doi.org/10.3390/soilsystems8030098
Chicago/Turabian StyleBuchbauerová, Lucie, Masoud M. Ardestani, Jana Rydlová, Hana Veselá, and Jan Frouz. 2024. "Establishment of Nitrogen-Fixing Frankia, Arbuscular Mycorrhizal Fungi, and Their Effects on Alder (Alnus glutinosa L.) Growth in Post-Mining Heap Soils" Soil Systems 8, no. 3: 98. https://doi.org/10.3390/soilsystems8030098
APA StyleBuchbauerová, L., Ardestani, M. M., Rydlová, J., Veselá, H., & Frouz, J. (2024). Establishment of Nitrogen-Fixing Frankia, Arbuscular Mycorrhizal Fungi, and Their Effects on Alder (Alnus glutinosa L.) Growth in Post-Mining Heap Soils. Soil Systems, 8(3), 98. https://doi.org/10.3390/soilsystems8030098