Synergistic Effects of Urea, Poultry Manure, and Zeolite on Wheat Growth and Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Site Description
2.3. Soil Analysis
2.4. Experimental Inputs
2.5. Details of Experimental Design and Treatments
2.6. Data Collection
2.6.1. Growth Parameters
2.6.2. Yield and Related Trails
2.6.3. Biochemical Analysis of Plant and Grain Samples
2.7. Statistical Analysis
3. Results
3.1. Impact of Various Treatments on Wheat Growth Characteristics
3.2. Effect of Different Soil Amendments on Yield and Yield Attributes of Wheat
3.3. Effect of Different Soil Amendments on Nutrient Content of Shoot and Grain of Wheat
3.4. Effect of Different Soil Amendments on Shoot and Grain Nutrient Uptake of Wheat
3.5. Total N, P, and K Uptake by Wheat
3.6. Post-Harvest Soil pH, Organic Matter, Total N, and AB-DTPA Extractable P and K
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, H.; Cai, Z.; Liao, J.; Tang, D.; Zhang, S. Sexually differential gene expressions in poplar roots in response to nitrogen deficiency. Tree Physiol. 2019, 39, 1614–1629. [Google Scholar] [CrossRef]
- Rasool, F.-U.; Hasan, B.; Jahangir, I.; Ali, T.; Mubarak, T. Nutritional yield and economic responses of sunflower (Helianthus annuus L.) to integrated levels of nitrogen, sulphur and farmyard manure. J. Agric. Sci. 2013, 8, 17–27. [Google Scholar] [CrossRef]
- Muhammad, I.; Yang, L.; Ahmad, S.; Farooq, S.; Al-Ghamdi, A.A.; Khan, A.; Zeeshan, M.; Elshikh, M.S.; Abbasi, A.M.; Zhou, X.-B. Nitrogen fertilizer modulates plant growth, chlorophyll pigments and enzymatic activities under different irrigation regimes. Agronomy 2022, 12, 845. [Google Scholar] [CrossRef]
- Guo, K.; Yang, J.; Yu, N.; Luo, L.; Wang, E. Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives. Plant Commun. 2023, 4, 100499. [Google Scholar] [CrossRef]
- van Grinsven, H.J.; Ebanyat, P.; Glendining, M.; Gu, B.; Hijbeek, R.; Lam, S.K.; Lassaletta, L.; Mueller, N.D.; Pacheco, F.S.; Quemada, M. Establishing long-term nitrogen response of global cereals to assess sustainable fertilizer rates. Nat. Food 2022, 3, 122–132. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, C.; Su, Y.; Peng, W.; Lu, R.; Liu, Y.; Huang, H.; He, X.; Yang, M.; Zhu, S. Soil Acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. Agric. Ecosyst. Environ. 2022, 340, 108176. [Google Scholar] [CrossRef]
- Krasilnikov, P.; Taboada, M.A.; Amanullah. Fertilizer use, soil health and agricultural sustainability. Agriculture 2022, 12, 462. [Google Scholar] [CrossRef]
- Sharma, N.; Shukla, Y.; Singh, K.; Mehta, D. Soil fertility, nutrient uptake and yield of bell pepper as influenced by conjoint application of organic and inorganic fertilizers. Commun. Soil Sci. Plant Anal. 2020, 51, 1626–1640. [Google Scholar] [CrossRef]
- Jamal, A.; Saeed, M.F.; Mihoub, A.; Hopkins, B.G.; Ahmad, I.; Naeem, A. Integrated use of phosphorus fertilizer and farmyard manure improves wheat productivity by improving soil quality and P availability in calcareous soil under subhumid conditions. Front. Plant Sci. 2023, 14, 1034421. [Google Scholar] [CrossRef]
- Mihoub, A.; Naeem, A.; Amin, A.E.-E.A.Z.; Jamal, A.; Saeed, M.F. Pigeon manure tea improves phosphorus availability and wheat growth through decreasing p adsorption in a calcareous sandy soil. Commun. Soil Sci. Plant Anal. 2022, 53, 2596–2607. [Google Scholar] [CrossRef]
- Salman, M.; Inamullah; Jamal, A.; Mihoub, A.; Saeed, M.F.; Radicetti, E.; Ahmad, I.; Naeem, A.; Ullah, J.; Pampana, S. Composting Sugarcane Filter Mud with Different Sources Differently Benefits Sweet Maize. Agronomy 2023, 13, 748. [Google Scholar] [CrossRef]
- Ullah, J.; Shah, S.; Mihoub, A.; Jamal, A.; Saeed, M.F.; Székely, Á.; Radicetti, E.; Salman, M.; Caballero-Calvo, A. Assessing the Effect of Combining Phosphorus Fertilizers with Crop Residues on Maize (Zea mays L.) Productivity and Financial Benefits. Gesunde Pflanz 2023, 75, 1–14. [Google Scholar] [CrossRef]
- Sharma, S.; Rana, V.S.; Rana, N.; Sharma, U.; Gudeta, K.; Alharbi, K.; Ameen, F.; Bhat, S.A. Effect of organic manures on growth, yield, leaf nutrient uptake and soil properties of Kiwifruit (Actinidia deliciosa Chev.) cv. Allison. Plants 2022, 11, 3354. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Ejue, W.S.; Olayanju, A.; Dunsin, O.; Aboyeji, C.M.; Aremu, C.; Adegbite, K.; Akinpelu, O. Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Sci. Rep. 2020, 10, 16083. [Google Scholar] [CrossRef] [PubMed]
- Amato, H.K.; Wong, N.M.; Pelc, C.; Taylor, K.; Price, L.B.; Altabet, M.; Jordan, T.E.; Graham, J.P. Effects of concentrated poultry operations and cropland manure application on antibiotic resistant Escherichia coli and nutrient pollution in Chesapeake Bay watersheds. Sci. Total Environ. 2020, 735, 139401. [Google Scholar] [CrossRef] [PubMed]
- Kavvadias, V.; Ioannou, Z.; Vavoulidou, E.; Paschalidis, C. Short Term Effects of Chemical Fertilizer, Compost and Zeolite on Yield of Lettuce, Nutrient Composition and Soil Properties. Agriculture 2023, 13, 1022. [Google Scholar] [CrossRef]
- Hazrati, S.; Khurizadeh, S.; Sadeghi, A.R. Application of zeolite improves water and nitrogen use efficiency while increasing essential oil yield and quality of Salvia officinalis under water-deficit stress. Saudi J. Biol. Sci. 2022, 29, 1707–1716. [Google Scholar] [CrossRef] [PubMed]
- Amirahmadi, E.; Ghorbani, M.; Moudrý, J. Effects of zeolite on aggregation, nutrient availability, and growth characteristics of corn (Zea mays L.) in cadmium-contaminated soils. Water Air Soil Pollut. 2022, 233, 436. [Google Scholar] [CrossRef]
- Velarde, L.; Nabavi, M.S.; Escalera, E.; Antti, M.-L.; Akhtar, F. Adsorption of heavy metals on natural zeolites: A review. Chemosphere 2023, 328, 138508. [Google Scholar] [CrossRef] [PubMed]
- Rashed, M.N.; Palanisamy, P.N. Introductory chapter: Adsorption and ion exchange properties of zeolites for treatment of polluted water. In Zeolites and Their Applications; IntechOpen: London, UK, 2018; Volume 1. [Google Scholar]
- Jarosz, R.; Szerement, J.; Gondek, K.; Mierzwa-Hersztek, M. The use of zeolites as an addition to fertilisers–A review. Catena 2022, 213, 106125. [Google Scholar] [CrossRef]
- Soudejani, H.T.; Kazemian, H.; Inglezakis, V.J.; Zorpas, A.A. Application of zeolites in organic waste composting: A review. Biocatal. Agric. Biotechnol. 2019, 22, 101396. [Google Scholar] [CrossRef]
- Cairo, P.C.; de Armas, J.M.; Artiles, P.T.; Martin, B.D.; Carrazana, R.J.; Lopez, O.R. Effects of zeolite and organic fertilizers on soil quality and yield of sugarcane. Aust. J. Crop Sci. 2017, 11, 733–738. [Google Scholar] [CrossRef]
- Khan, I.; Amanullah; Jamal, A.; Mihoub, A.; Farooq, O.; Farhan Saeed, M.; Roberto, M.; Radicetti, E.; Zia, A.; Azam, M. Partial substitution of chemical fertilizers with organic supplements increased wheat productivity and profitability under limited and assured irrigation regimes. Agriculture 2022, 12, 1754. [Google Scholar] [CrossRef]
- Mihoub, A.; Ahmad, I.; Radicetti, E. Alternative fertilizer harnessing plant-microbe interactions (AFPMI) for improved soil and plant nutrient management. Front. Plant Sci. 2023, 14, 1333927. [Google Scholar] [CrossRef]
- Geng, Y.; Cao, G.; Wang, L.; Wang, S. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLoS ONE 2019, 14, e0219512. [Google Scholar] [CrossRef]
- Ramesh, P.; Raten Panwar, N.; Bahadur Singh, A.; Ramana, S.; Subba Rao, A. Impact of organic-manure combinations on the productivity and soil quality in different cropping systems in central India. J. Plant Nutr. Soil Sci. 2009, 172, 577–585. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Kundu, S.; Prakash, V.; Gupta, H.S. Sustainability under combined application of mineral and organic fertilizers in a rainfed soybean–wheat system of the Indian Himalayas. Eur. J. Agron. 2008, 28, 33–46. [Google Scholar] [CrossRef]
- Paramesh, V.; Kumar, R.M.; Rajanna, G.; Gowda, S.; Nath, A.J.; Madival, Y.; Jinger, D.; Bhat, S.; Toraskar, S. Integrated nutrient management for improving crop yields, soil properties, and reducing greenhouse gas emissions. Front. Sustain. Food Syst. 2023, 7, 1173258. [Google Scholar] [CrossRef]
- Rasool, F.; Nizamani, Z.A.; Ahmad, K.S.; Parveen, F.; Khan, S.A.; Sabir, N. Phytotoxicological study of selected poisonous plants from Azad Jammu & Kashmir. PLoS ONE 2022, 17, e0263605. [Google Scholar]
- Khaliq, A.; Zafar, M.; Abbasi, M.K.; Tahir, M.M.; Sarwar, S. Optimizing surface soil NPK balance through integrated nutrient management in wheat-soybean cropping system from Rawalakot Pakistan. Pure Appl. Biol. 2019, 8, 2373–2388. [Google Scholar] [CrossRef]
- Khaliq, A.; Shaheen, A.; Ishaq, S.; Zafar, M.; Tahir, M.M.; Zahoor, T.; Sarwar, S. Evaluation of Soil Fertility and Maize Crop Nutrient Status in Himalayan Region Poonch, Azad Jammu and Kashmir. Proc. Pak. Acad. Sci. Pak. Acad. Sci. 2021, 58, 89–98. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; Wiley: Hoboken, NJ, USA, 1986; Volume 5, pp. 383–411. [Google Scholar]
- McLean, E. Soil pH and lime requirement. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Wiley: Hoboken, NJ, USA, 1983; Volume 9, pp. 199–224. [Google Scholar]
- Nelson, D.A.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Wiley: Hoboken, NJ, USA, 1983; Volume 9, pp. 539–579. [Google Scholar]
- Soltanpour, P.; Schwab, A. A new soil test for simultaneous extraction of macro-and micro-nutrients in alkaline soils. Commun. Soil Sci. Plant Anal. 1977, 8, 195–207. [Google Scholar] [CrossRef]
- Bremner, J.M. Nitrogen-total. In Methods of Soil Analysis: Part 3 Chemical Methods; Wiley: Hoboken, NJ, USA, 1996; Volume 5, pp. 1085–1121. [Google Scholar]
- Ahmed, H.G.M.-D.; Zeng, Y.; Shah, A.N.; Yar, M.M.; Ullah, A.; Ali, M. Conferring of drought tolerance in wheat (Triticum aestivum L.) genotypes using seedling indices. Front. Plant Sci. 2022, 13, 961049. [Google Scholar] [CrossRef] [PubMed]
- Bremner, J.M.; Mulvaney, C.S. Total nitrogen. In Methods of Soil Analysis; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Winkleman, G.; Amin, R.; Rice, W.; Tahir, M. Methods Manual Soil Laboratory; BARD Project; PARC: Islamabad, Pakistan, 1990. [Google Scholar]
- Saeed, M.F.; Jamal, A.; Muhammad, D.; Shah, G.M.; Bakhat, H.F.; Ahmad, I.; Ali, S.; Ihsan, F.; Wang, J. Optimizing phosphorus levels in wheat grown in a calcareous soil with the use of adsorption isotherm models. J. Soil Sci. Plant Nutr. 2021, 21, 81–94. [Google Scholar] [CrossRef]
- McIntyre, D. Water retention and the moisture characteristic. In Methods for Analysis of Irrigated Soils; Technical Communication No. 54; Commonwealth Bureau of Soils: Canberra, Australia, 1974; pp. 43–62. [Google Scholar]
- d Steel, R.G.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach; McGraw-Hill: New York, NY, USA, 1986. [Google Scholar]
- Adekiya, A.O.; Ogunboye, O.I.; Ewulo, B.S.; Olayanju, A. Effects of different rates of poultry manure and split applications of urea fertilizer on soil chemical properties, growth, and yield of maize. Sci. World J. 2020, 2020, 4610515. [Google Scholar] [CrossRef] [PubMed]
- Shaji, H.; Chandran, V.; Mathew, L. Organic fertilizers as a route to controlled release of nutrients. In Controlled Release Fertilizers for Sustainable Agriculture; Elsevier: Amsterdam, The Netherlands, 2021; pp. 231–245. [Google Scholar]
- Dubey, A.; Mailapalli, D.R. Zeolite coated urea fertilizer using different binders: Fabrication, material properties and nitrogen release studies. Environ. Technol. Innov. 2019, 16, 100452. [Google Scholar] [CrossRef]
- Addeo, N.F.; Nocera, F.P.; Toscanesi, M.; Trifuoggi, M.; Bovera, F.; De Martino, L.; De Prisco, R. On effect of poultry manure treatment with Effective Microorganisms with or without zeolite. Environ. Sci. Pollut. Res. 2023, 30, 91189–91198. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, Z.U.R.; Ahmad, I.; Abdul Qadir, A.; Murtaza, G.; Rafiq, S.; Jamal, A.; Zeeshan, N.; Murtaza, B.; Javed, W.; Radicetti, E. Zeolite-assisted immobilization and health risks of potentially toxic elements in wastewater-irrigated soil under brinjal (Solanum melongena) cultivation. Agronomy 2022, 12, 2433. [Google Scholar] [CrossRef]
- Ali, A.; Syed, A.; Khaliq, T.; Asif, M.; Aziz, M.; Mubeen, M. Effects of nitrogen on growth and yield components of wheat.(Report). Biol. Sci. 2011, 3, 1004–1005. [Google Scholar]
- Mondal, M.; Biswas, B.; Garai, S.; Sarkar, S.; Banerjee, H.; Brahmachari, K.; Bandyopadhyay, P.K.; Maitra, S.; Brestic, M.; Skalicky, M. Zeolites enhance soil health, crop productivity and environmental safety. Agronomy 2021, 11, 448. [Google Scholar] [CrossRef]
- Azimnejad, A.; Fallah Amoli, H.; Niknejad, Y.; Ahmadpour, A.; Barari Tari, D. Fertilizer management strategies for improved quality and yield in winter wheat. SN Appl. Sci. 2023, 5, 227. [Google Scholar] [CrossRef]
- Mahboob, W.; Yang, G.; Irfan, M. Crop nitrogen (N) utilization mechanism and strategies to improve N use efficiency. Acta Physiol. Plant 2023, 45, 52. [Google Scholar] [CrossRef]
- Kacprzak, M.; Malińska, K.; Grosser, A.; Sobik-Szołtysek, J.; Wystalska, K.; Dróżdż, D.; Jasińska, A.; Meers, E. Cycles of carbon, nitrogen and phosphorus in poultry manure management technologies–environmental aspects. Crit. Rev. Environ. Sci. Technol. 2023, 53, 914–938. [Google Scholar] [CrossRef]
- Ghimire, S.; Chhetri, B.P.; Shrestha, J. Efficacy of different organic and inorganic nutrient sources on the growth and yield of bitter gourd (Momordica charantia L.). Heliyon 2023, 9, e22135. [Google Scholar] [CrossRef]
- Ahmad, A.; Ijaz, S.S.; He, Z. Effects of zeolitic urea on nitrogen leaching (NH4-N and NO3-N) and volatilization (NH3) in spodosols and alfisols. Water 2021, 13, 1921. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Sun, Y.; Jiao, Y.; Yang, Y.; Yuan, X.; Lærke, P.E.; Wu, Q.; Chi, D. Zeolite reduces N leaching and runoff loss while increasing rice yields under alternate wetting and drying irrigation regime. Agric. Water Manag. 2023, 277, 108130. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, G.; Wang, S.; Xia, G.; Chen, T.; Chen, Y.; Siddique, K.H.; Chi, D. Zeolite enhances phosphorus accumulation, translocation, and partitioning in rice under alternate wetting and drying. Field Crops Res. 2022, 286, 108632. [Google Scholar] [CrossRef]
- Głąb, T.; Gondek, K.; Mierzwa–Hersztek, M. Biological effects of biochar and zeolite used for remediation of soil contaminated with toxic heavy metals. Sci. Rep. 2021, 11, 6998. [Google Scholar] [CrossRef] [PubMed]
- Lija, M.; Haruna, A.O.; Kasim, S. Maize (Zea mays L.) Nutrient use efficiency as affected by formulatedfertilizer with clinoptilolite zeolite. Emir. J. Food Agric. 2014, 26, 284–292. [Google Scholar] [CrossRef]
- Martín-Lammerding, D.; Gabriel, J.L.; Zambrana, E.; Santín-Montanyá, I.; Tenorio, J.L. Organic amendment vs. Mineral fertilization under minimum tillage: Changes in soil nutrients, soil organic matter, biological properties and yield after 10 years. Agriculture 2021, 11, 700. [Google Scholar] [CrossRef]
- Lasisi, A.A.; Akinremi, O.O. Kinetics and thermodynamics of urea hydrolysis in the presence of urease and nitrification inhibitors. Can. J. Soil Sci. 2020, 101, 192–202. [Google Scholar] [CrossRef]
- Dróżdż, D.; Malińska, K.; Wystalska, K.; Meers, E.; Robles-Aguilar, A. The Influence of Poultry Manure-Derived Biochar and Compost on Soil Properties and Plant Biomass Growth. Materials 2023, 16, 6314. [Google Scholar] [CrossRef]
- Szatanik-Kloc, A.; Szerement, J.; Adamczuk, A.; Józefaciuk, G. Effect of low zeolite doses on plants and soil physicochemical properties. Materials 2021, 14, 2617. [Google Scholar] [CrossRef] [PubMed]
- Geisseler, D.; Smith, R.; Cahn, M.; Muramoto, J. Nitrogen mineralization from organic fertilizers and composts: Literature survey and model fitting. J. Environ. Qual. 2021, 50, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Spyridonidis, A.; Vasiliadou, I.A.; Stamatelatou, K. Effect of zeolite on the methane production from chicken manure leachate. Sustainability 2022, 14, 2207. [Google Scholar] [CrossRef]
- Fotidis, I.A.; Kougias, P.G.; Zaganas, I.D.; Kotsopoulos, T.A.; Martzopoulos, G.G. Inoculum and zeolite synergistic effect on anaerobic digestion of poultry manure. Environ. Technol. 2014, 35, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Hasbullah, N.A.; Ahmed, O.H.; Ab Majid, N.M. Effects of amending phosphatic fertilizers with clinoptilolite zeolite on phosphorus availability and its fractionation in an acid soil. Appl. Sci. 2020, 10, 3162. [Google Scholar] [CrossRef]
- Kumar, L.; Kaur, R.; Sharma, J. The efficiency of zeolites in water treatment for combating ammonia–An experimental study on Yamuna River water & treated sewage effluents. Inorg. Chem. Commun. 2021, 134, 108978. [Google Scholar]
- Nur Aainaa, H.; Haruna Ahmed, O.; Ab Majid, N.M. Effects of clinoptilolite zeolite on phosphorus dynamics and yield of Zea mays L. cultivated on an acid soil. PLoS ONE 2018, 13, e0204401. [Google Scholar] [CrossRef]
- Su, J.-Y.; Liu, C.-H.; Tampus, K.; Lin, Y.-C.; Huang, C.-H. Organic amendment types influence soil properties, the soil bacterial microbiome, and tomato growth. Agronomy 2022, 12, 1236. [Google Scholar] [CrossRef]
- Rusli, L.S.; Abdullah, R.; Yaacob, J.S.; Osman, N. Organic amendments effects on nutrient uptake, secondary metabolites, and antioxidant properties of Melastoma malabathricum L. Plants 2022, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, S.S.; Sharma, V.; Verma, V.; Kaur, M.; Singh, P.; Gaber, A.; Laing, A.M.; Hossain, A. Impact of manures and fertilizers on yield and soil properties in a rice-wheat cropping system. PLoS ONE 2023, 18, e0292602. [Google Scholar] [CrossRef] [PubMed]
Treatments | Shoot Length (cm) | Shoot Fresh Weight (g) | Shoot Dry Weight (g) | Root Length (cm) | Root Fresh Weight (g) |
---|---|---|---|---|---|
Control | 39.1 e | 5.9 e | 2.8 f | 7.7 b | 2.7 f |
UN120 | 70.3 a | 8.9 a | 6.0 a | 11.6 a | 3.7 a–e |
PM120 | 46.8 de | 7.8 abc | 5.3 abc | 11.7 a | 3.5 cde |
Z1 | 40.4 e | 6.2 de | 4.2 e | 8.3 b | 3.1 def |
Z2 | 40.1 e | 6.4 de | 4.3 de | 8.0 b | 3.1 def |
UN120 + Z1 | 69.5 a | 7.7 bc | 5.2 a–d | 12.4 a | 3.7 bcde |
PM120 + Z1 | 58.9 bc | 7.1 cd | 4.8 b–e | 12.2 a | 3.8 abc |
UN120 + Z2 | 67.7 a | 7.8 abc | 5.3 abc | 12.4 a | 3.8 abcd |
PM120 + Z2 | 54.4 cd | 6.6 de | 4.4 cde | 11.3 a | 3.7 bcde |
UN60 + PM60 + Z1 | 67.0 ab | 8.4 ab | 5.7 ab | 12.9 a | 4.4 a |
UN60 + PM60 + Z2 | 65.6 ab | 8.5 ab | 5.7 ab | 12.0 a | 4.2 ab |
UN60 + PM60 + ½ Z1 + ½ Z2 | 65.7 ab | 8.3 ab | 5.7 ab | 11.2 a | 4.2 ab |
LSD (p ≤ 0.05) | 8.34 | 1.10 | 0.94 | 2.06 | 0.68 |
Treatments | No. of Grains Spike−1 | Spike Length (cm) | 1000-Grain Weight (g) | Straw Yield (kg ha−1) | Grain Yield (kg ha−1) | Biological Yield (kg ha−1) | Harvest Index (%) |
---|---|---|---|---|---|---|---|
Control | 19.9 e | 5.3 e | 27.5 e | 2979 e | 1060 d | 4040 d | 26.2 |
UN120 | 34.7 a | 10.2 ab | 33.3 ab | 4201 a | 1888 a | 6122 a | 31.0 |
PM120 | 25.8 cde | 7.7 cd | 28.2 cde | 3542 c–e | 1258 cd | 4800 bc | 26.2 |
Z1 | 20.3 e | 8.4 c | 28.1 cde | 3098 de | 1103 cd | 4202 cd | 26.3 |
Z2 | 20.3 e | 7.0 d | 27.9 de | 3023 e | 1097 cd | 4120 d | 26.6 |
UN120 + Z1 | 33.0 ab | 10.5 a | 35.5 a | 4254 a | 1823 a | 6077 a | 30.0 |
PM120 + Z1 | 26.1 b–e | 9.8 ab | 29.6 b–e | 3616 bc | 1303 c | 4919 b | 26.5 |
UN120 + Z2 | 31.5 a–d | 10.3 ab | 32.3 a–d | 4214 a | 1908 a | 6089 a | 31.2 |
PM120 + Z2 | 24.6 de | 9.0 bc | 29.9 b–e | 3602 b–d | 1295 cd | 4897 b | 26.4 |
UN60 + PM60 + Z1 | 31.9 a–c | 10.1 ab | 33.0 ab | 3916 a–c | 1780 ab | 5696 a | 31.3 |
UN60 + PM60 + Z2 | 28.2 a–d | 9.9 ab | 32.6 abc | 4078 ab | 1547 b | 5625 a | 27.5 |
UN60 + PM60 + ½ Z1 + ½ Z2 | 32.6 a–c | 10.2 ab | 32.4 a–d | 4169 a | 1698 ab | 5866 a | 28.9 |
LSD (p ≤ 0.05) | 6.90 | 1.37 | 4.65 | 538.0 | 237.7 | 535.6 | NS |
Treatments | Shoot Nitrogen (g kg−1) | Shoot Phosphorous (g kg−1) | Shoot Potassium (g kg−1) | Grain N (g kg −1) | Grain P (g kg−1) | Grain K (g kg−1) |
---|---|---|---|---|---|---|
Control | 9.41 d | 1.2 f | 9.0 f | 15.4 e | 4.9 d | 5.8 |
UN120 | 16.08 ab | 1.6 e | 10.4 e | 21.2 abc | 5.3 cd | 6.0 |
PM120 | 11.7 bcd | 1.8 abcd | 11.4 de | 18.5 d | 6.9 ab | 7.1 |
Z1 | 9.4 d | 1.2 f | 11.9 cd | 15.5 e | 5.0 d | 7.6 |
Z2 | 9.3 d | 1.2 f | 12.1 bcd | 15.0 e | 4.9 d | 7.4 |
UN120 + Z1 | 16.6 a | 1.6 de | 13.0 abc | 21.8 a | 5.3 cd | 7.2 |
PM120 + Z1 | 11.7 bcd | 1.9 a | 12.8 abc | 18.8 bcd | 7.1 a | 7.7 |
UN120 + Z2 | 16.3 a | 1.7 cde | 13.0 abc | 21.5 ab | 5.5 cd | 7.1 |
PM120 + Z2 | 11.5 cd | 1.9 ab | 12.7 abc | 18.6 cd | 7.0 a | 7.8 |
UN60 + PM60 + Z1 | 15.9 abc | 1.8 abc | 13.1 ab | 22.4 a | 6.1 abc | 6.6 |
UN60 + PM60 + Z2 | 15.8 abc | 1.7 bcde | 13.0 abc | 20.7 a–d | 6.3 abc | 6.5 |
UN60 + PM60 + ½ Z1 + ½ Z2 | 15.4 abc | 1.7 cde | 13.2 a | 21.5 ab | 5.9 bcd | 7.2 |
LSD (p ≤ 0.05) | 4.54 | 0.182 | 1.145 | 2.833 | 1.084 | NS |
Treatments | Shoot N-Uptake (kg ha−1) | Shoot P-Uptake (kg ha−1) | Shoot K-Uptake (kg ha−1) | Grain N-Uptake (kg ha−1) | Grain P-Uptake (kg ha−1) | Grain K-Uptake (kg ha−1) |
---|---|---|---|---|---|---|
Control | 13.5 b | 3.1 c | 27.0 d | 16.3 d | 5.2 b | 6.1 e |
UN120 | 24.9 a | 5.4 abc | 41.3 bc | 40.0 a | 10.1 a | 11.3 abc |
PM120 | 25.6 a | 6.2 a | 41.6 bc | 23.2 cd | 8.7 a | 8.9 cd |
Z1 | 16.4 b | 3.5 bc | 37.5 c | 17.1 d | 5.5 b | 8.4 de |
Z2 | 16.8 b | 3.4 c | 37.0 c | 16.5 d | 5.4 b | 8.1 de |
UN120 + Z1 | 28.1 a | 6.1 a | 50.8 a | 39.8 a | 9.7 a | 13.1 a |
PM120 + Z1 | 27.1 a | 7.1 a | 45.1 ab | 24.5 c | 9.2 a | 10.0 bcd |
UN120 + Z2 | 27.5 a | 6.1 a | 50.9 a | 41.1 a | 10.6 a | 13.5 a |
PM120 + Z2 | 25.0 a | 6.8 a | 44.7 abc | 24.1 c | 9.1 a | 10.1 bcd |
UN60 + PM60 + Z1 | 26.3 a | 7.1 a | 50.3 a | 39.9 a | 10.9 a | 11.8 ab |
UN60 + PM60 + Z2 | 27.9 a | 6.1 a | 51.5 a | 32.0 b | 9.8 a | 10.0 bcd |
UN60 + PM60 + ½ Z1 + ½ Z2 | 28.7 a | 5.9 ab | 51.8 a | 36.5 ab | 10.0 a | 12.2 ab |
LSD (p ≤ 0.05) | 5.298 | 2.512 | 7.955 | 7.052 | 2.326 | 2.516 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaliq, A.; Shehzad, M.; Huma, M.K.; Tahir, M.M.; Javeed, H.M.R.; Saeed, M.F.; Jamal, A.; Mihoub, A.; Radicetti, E.; Mancinelli, R. Synergistic Effects of Urea, Poultry Manure, and Zeolite on Wheat Growth and Yield. Soil Syst. 2024, 8, 18. https://doi.org/10.3390/soilsystems8010018
Khaliq A, Shehzad M, Huma MK, Tahir MM, Javeed HMR, Saeed MF, Jamal A, Mihoub A, Radicetti E, Mancinelli R. Synergistic Effects of Urea, Poultry Manure, and Zeolite on Wheat Growth and Yield. Soil Systems. 2024; 8(1):18. https://doi.org/10.3390/soilsystems8010018
Chicago/Turabian StyleKhaliq, Abdul, Muhammad Shehzad, Mahwish Khan Huma, Majid Mahmood Tahir, Hafiz Muhammad Rashad Javeed, Muhammad Farhan Saeed, Aftab Jamal, Adil Mihoub, Emanuele Radicetti, and Roberto Mancinelli. 2024. "Synergistic Effects of Urea, Poultry Manure, and Zeolite on Wheat Growth and Yield" Soil Systems 8, no. 1: 18. https://doi.org/10.3390/soilsystems8010018
APA StyleKhaliq, A., Shehzad, M., Huma, M. K., Tahir, M. M., Javeed, H. M. R., Saeed, M. F., Jamal, A., Mihoub, A., Radicetti, E., & Mancinelli, R. (2024). Synergistic Effects of Urea, Poultry Manure, and Zeolite on Wheat Growth and Yield. Soil Systems, 8(1), 18. https://doi.org/10.3390/soilsystems8010018