The Reinforcement of Early Growth, Extract, and Oil of Silybum marianum L. by Polymer Organic Cover and Bacteria Inoculation under Water Deficit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment I
2.1.1. Measurement of the Amount of Water Absorbed by the Mixture of Superabsorbent Polymer and OSC
2.1.2. Organic Seed Cover (OSC) Fillers Preparation and Plantation
2.2. Experiment II
2.2.1. Seed Inoculation with Bacteria
2.2.2. Emergence Rate (Day)
2.2.3. Shoot and Root Length (cm)
2.2.4. Seedling Length and Weight Vigor Index
2.2.5. Leaf Area (LA)
2.2.6. Relative Water Content (RWC)
2.2.7. SPAD Chlorophyll Meter Reading (SCMR)
2.2.8. Leaf-Free Proline Content
2.2.9. Enzymatic Antioxidant Activities
2.2.10. Reduction Percentage (RP)
2.2.11. S. marianum Extraction
2.3. Statistical Analysis
3. Results
3.1. Experiment I
3.1.1. Emergence Rate
3.1.2. Leaf Area
3.1.3. Root Length
3.1.4. Shoot Length
3.1.5. Free Leaf Proline Contents
3.1.6. Enzymatic Antioxidant Activities
3.1.7. Seedling Length Vigor Index (SLVI)
3.1.8. Seedling Weight Vigor Index
3.1.9. Fresh Leaf Extract and Oil
3.2. Experiment II
3.2.1. Emergence Percentage
3.2.2. Leaf Area
3.2.3. Relative Water Content (RWC)
3.2.4. Seedling Weight Vigor Index (SWVI)
3.2.5. Shoot Length
3.2.6. SPAD Chlorophyll Meter Reading
3.2.7. Extract Fresh Shoot
3.2.8. Fresh Shoot Oil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koch, G.; Rolland, G.; Dauzat, M.; Bédiée, A.; Baldazzi, V.; Bertin, N.; Guédon, Y.; Granier, C. Leaf Production and Expansion: A Generalized Response to Drought Stresses from Cells to Whole Leaf Biomass—A Case Study in the Tomato Compound Leaf. Plants 2019, 8, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abenavoli, L.; Aviello, G.; Capasso, R.; Milic, N.; Capasso, F. Milk thistle for treatment of nonalcoholic fatty liver disease. Hepat. Mon. 2011, 11, 173–177. [Google Scholar]
- Alizadeh, N.; Eskandani, M.; Tondro, K.; Rashidi, M.-R.; Nazemiyeh, H. Inhibitory Effects of Flavonolignans from Silybum marianum (L.) Gaertn (Milk Thistle) on Function of Aldehyde Oxidase and Xanthine Oxidase in Rats. Lett. Drug Des. Discov. 2018, 15, 256–262. [Google Scholar] [CrossRef]
- Kour, D.; Rana, K.L.; Yadav, A.N.; Yadav, N.; Kumar, V.; Kumar, A.; Sayyed, R.Z.; Hesham, A.E.-L.; Dhaliwal, H.S.; Saxena, A.K. Drought-Tolerant Phosphorus-Solubilizing Microbes: Biodiversity and Biotechnological Applications for Alleviation of Drought Stress in Plants. In Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. Microorganisms for Sustainability; Springer: Singapore, 2019; Volume 12, pp. 255–308. [Google Scholar] [CrossRef]
- Moghaddam, P.R. Investigating the Seed Germination Characteristics of Milk thistle (Silybum marianum L.) Affected by Magnetic Field, Sodium chloride and Hydro-priming. Adv. Plants Agric. Res. 2015, 2, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Bayati, P.; Karimmojeni, H.; Razmjoo, J.; Pucci, M.; Abate, G.; Baldwin, T.C.; Mastinu, A. Physiological, Biochemical, and Agronomic Trait Responses of Nigella sativa Genotypes to Water Stress. Horticulturae 2022, 8, 193. [Google Scholar] [CrossRef]
- Biareh, V.; Shekari, F.; Sayfzadeh, S.; Zakerin, H.; Hadidi, E.; Beltrao, J.G.T.; Mastinu, A. Physiological and Qualitative Response of Cucurbita pepo L. to Salicylic Acid under Controlled Water Stress Conditions. Horticulturae 2022, 8, 79. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi, A.; Moradi, P.; Mastinu, A. Variation in Terpene Profiles of Thymus vulgaris in Water Deficit Stress Response. Molecules 2020, 25, 1091. [Google Scholar] [CrossRef] [Green Version]
- Naservafaei, S.; Sohrabi, Y.; Moradi, P.; Mac Sweeney, E.; Mastinu, A. Biological Response of Lallemantia iberica to Brassinolide Treatment under Different Watering Conditions. Plants-Basel 2021, 10, 496. [Google Scholar] [CrossRef]
- Yousefi, A.R.; Rashidi, S.; Moradi, P.; Mastinu, A. Germination and Seedling Growth Responses of Zygophyllum fabago, Salsola kali L. and Atriplex canescens to PEG-Induced Drought Stress. Environments 2020, 7, 107. [Google Scholar] [CrossRef]
- Yousefvand, P.; Sohrabi, Y.; Heidari, G.; Weisany, W.; Mastinu, A. Salicylic Acid Stimulates Defense Systems in Allium hirtifolium Grown under Water Deficit Stress. Molecules 2022, 27, 3083. [Google Scholar] [CrossRef] [PubMed]
- Zangani, E.; Angourani, H.R.; Andalibi, B.; Rad, S.V.; Mastinu, A. Sodium Nitroprusside Improves the Growth and Behavior of the Stomata of Silybum marianum L. Subjected to Different Degrees of Drought. Life 2023, 13, 875. [Google Scholar] [CrossRef] [PubMed]
- Prăvălie, R. Drylands extent and environmental issues. A global approach. Earth-Sci. Rev. 2016, 161, 259–278. [Google Scholar] [CrossRef]
- Zulueta-Rodriguez, R.; Cordoba-Matson, M.V.; Hernandez-Montiel, L.G.; Murillo-Amador, B.; Rueda-Puente, E.; Lara, L. Effect ofPseudomonas putidaon Growth and Anthocyanin Pigment in Two Poinsettia (Euphorbia pulcherrima) Cultivars. Sci. World J. 2014, 2014, 810192. [Google Scholar] [CrossRef] [Green Version]
- Flora, K.; Hahn, M.; Rosen, H.; Benner, K. Milk Thistle (Silybum marianum) for the Therapy of Liver Disease. Am. J. Gastroenterol. 1998, 93, 139–143. [Google Scholar] [CrossRef]
- Amirkhani, M.; Mayton, H.; Loos, M.; Taylor, A. Development of Superabsorbent Polymer (SAP) Seed Coating Technology to Enhance Germination and Stand Establishment in Red Clover Cover Crop. Agronomy 2023, 13, 438. [Google Scholar] [CrossRef]
- Beigi, S.; Azizi, M.; Iriti, M. Application of Super Absorbent Polymer and Plant Mucilage Improved Essential Oil Quantity and Quality of Ocimum basilicum var. Keshkeni Luvelou. Molecules 2020, 25, 2503. [Google Scholar] [CrossRef]
- Milani, P.; França, D.; Balieiro, A.G.; Faez, R. Polymers and its applications in agriculture. Polímeros 2017, 27, 256–266. [Google Scholar] [CrossRef]
- Souza, R.d.; Ambrosini, A.; Passaglia, L.M.P. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 2015, 38, 401–419. [Google Scholar] [CrossRef]
- Bakass, M.; Mokhlisse, A.; Lallemant, M. Absorption and desorption of liquid water by a superabsorbent polymer: Effect of polymer in the drying of the soil and the quality of certain plants. J. Appl. Polym. Sci. 2002, 83, 234–243. [Google Scholar] [CrossRef]
- Kavino, M.; Harish, S.; Kumar, N.; Saravanakumar, D.; Samiyappan, R. Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa spp.) under field conditions. Appl. Soil Ecol. 2010, 45, 71–77. [Google Scholar] [CrossRef]
- Hu, C.; Delgado, J.A.; Zhang, X.; Ma, L. Assessment of groundwater use by wheat (Triticum aestivum L.) in the Luancheng Xian region and potential implications for water conservation in the northwestern North China Plain. J. Soil Water Conserv. 2005, 60, 80–88. [Google Scholar]
- Akhter, J.; Mahmood, K.; Malik, K.A.; Mardan, A.; Ahmad, M.; Iqbal, M.M. Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea. Plant Soil Environ. 2004, 50, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Arshad, M.; Shaharoona, B.; Mahmood, T. Inoculation with Pseudomonas spp. Containing ACC-Deaminase Partially Eliminates the Effects of Drought Stress on Growth, Yield, and Ripening of Pea (Pisum sativum L.). Pedosphere 2008, 18, 611–620. [Google Scholar] [CrossRef]
- Jabborova, D.; Kannepalli, A.; Davranov, K.; Narimanov, A.; Enakiev, Y.; Syed, A.; Elgorban, A.M.; Bahkali, A.H.; Wirth, S.; Sayyed, R.Z.; et al. Co-inoculation of rhizobacteria promotes growth, yield, and nutrient contents in soybean and improves soil enzymes and nutrients under drought conditions. Sci. Rep. 2021, 11, 22081. [Google Scholar] [CrossRef] [PubMed]
- Pompelli, M.F.; Jarma-Orozco, A.; Rodriguez-Páez, L.A. Imbibition and Germination of Seeds with Economic and Ecological Interest: Physical and Biochemical Factors Involved. Sustainability 2023, 15, 5394. [Google Scholar] [CrossRef]
- Yu, J.; Shi, J.G.; Ma, X.; Dang, P.F.; Yan, Y.L.; Mamedov, A.I.; Shainberg, I.; Levy, G.J. Superabsorbent Polymer Properties and Concentration Effects on Water Retention under Drying Conditions. Soil Sci. Soc. Am. J. 2017, 81, 889–901. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Miao, Y.; Wang, Z.; Yin, G. Synthesis and characterization of a novel super-absorbent based on chemically modified pulverized wheat straw and acrylic acid. Carbohydr. Polym. 2009, 77, 131–135. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, M.; Qi, X. Synthesis and Properties of a Superabsorbent Polymer Prepared by Copolymerization of Sodium Acrylate with Sodium 1-(Acryloyloxy)propan-2-yl Phosphate. Macromol. React. Eng. 2007, 1, 275–283. [Google Scholar] [CrossRef]
- Liu, F.; Ma, H.; Peng, L.; Du, Z.; Ma, B.; Liu, X. Effect of the inoculation of plant growth-promoting rhizobacteria on the photosynthetic characteristics of Sambucus williamsii Hance container seedlings under drought stress. AMB Express 2019, 9, 169. [Google Scholar] [CrossRef]
- Islam, M.R.; Hu, Y.; Mao, S.; Mao, J.; Eneji, A.E.; Xue, X. Effectiveness of a water-saving super-absorbent polymer in soil water conservation for corn (Zea mays L.) based on eco-physiological parameters. J. Sci. Food Agric. 2011, 91, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Li, R.; He, W.; Dai, X.; Ma, K.; Liang, Y. Superabsorbent polymers influence soil physical properties and increase potato tuber yield in a dry-farming region. J. Soils Sediments 2017, 18, 816–826. [Google Scholar] [CrossRef]
- Alkhasha, A.; Al-Omran, A.; Aly, A. Effects of Biochar and Synthetic Polymer on the Hydro-Physical Properties of Sandy Soils. Sustainability 2018, 10, 4642. [Google Scholar] [CrossRef] [Green Version]
- Boutraa, T.; Akhkha, A.; Al-Shoaibi, A.A.; Alhejeli, A.M. Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. J. Taibah Univ. Sci. 2018, 3, 39–48. [Google Scholar] [CrossRef] [Green Version]
- El-Asmar, J.; Jaafar, H.; Bashour, I.; Farran, M.T.; Saoud, I.P. Hydrogel Banding Improves Plant Growth, Survival, and Water Use Efficiency in Two Calcareous Soils. CLEAN—Soil Air Water 2017, 45, 1700251. [Google Scholar] [CrossRef]
- Kalam, S.; Basu, A.; Ahmad, I.; Sayyed, R.Z.; El-Enshasy, H.A.; Dailin, D.J.; Suriani, N.L. Recent Understanding of Soil Acidobacteria and Their Ecological Significance: A Critical Review. Front. Microbiol. 2020, 11, 580024. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Hailemichael, G.; Catalina, A.; González, M.R.; Martin, P. Relationships between Water Status, Leaf Chlorophyll Content and Photosynthetic Performance in Tempranillo Vineyards. S. Afr. J. Enol. Vitic. 2016, 37, 149–156. [Google Scholar] [CrossRef]
- Khan, A.; Sayyed, R.Z.; Seifi, S. Rhizobacteria: Legendary Soil Guards in Abiotic Stress Management. In Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. Microorganisms for Sustainability; Springer: Singapore, 2019; Volume 12, pp. 327–343. [Google Scholar] [CrossRef]
- Ilyas, N.; Mumtaz, K.; Akhtar, N.; Yasmin, H.; Sayyed, R.Z.; Khan, W.; Enshasy, H.A.E.; Dailin, D.J.; Elsayed, E.A.; Ali, Z. Exopolysaccharides Producing Bacteria for the Amelioration of Drought Stress in Wheat. Sustainability 2020, 12, 8876. [Google Scholar] [CrossRef]
- Motamedi, M.; Zahedi, M.; Karimmojeni, H.; Motamedi, H.; Mastinu, A. Effect of rhizosphere bacteria on antioxidant enzymes and some biochemical characteristics of Medicago sativa L. subjected to herbicide stress. Acta Physiol. Plant 2022, 44, 84. [Google Scholar] [CrossRef]
- Armada, E.; Roldan, A.; Azcon, R. Differential Activity of Autochthonous Bacteria in Controlling Drought Stress in Native Lavandula and Salvia Plants Species Under Drought Conditions in Natural Arid Soil. Microb. Ecol. 2014, 67, 410–420. [Google Scholar] [CrossRef]
- Khoshsokhan, F.; Babalar, M.; Chaghazardi, H.; Moghadam, M. Effect of Salinity and Drought Stress on Germination Indices of Two Thymus Species. Cercet. Agron. Mold. 2012, 45, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Rehman, A.; Ahmad, R.; Safdar, M. Effect of hydrogel on the performance of aerobic rice sown under different techniques. Plant Soil Environ. 2011, 57, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Šeršeň, F.; Vencel, T.; Annus, J. Silymarin and its components scavenge phenylglyoxylic ketyl radicals. Fitoterapia 2006, 77, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Shaker, E.; Mahmoud, H.; Mnaa, S. Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food Chem. Toxicol. 2010, 48, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xie, Z.; Zhang, X.; Lang, D.; Zhang, X. Growth-promoting bacteria alleviates drought stress of G. uralensis through improving photosynthesis characteristics and water status. J. Plant Interact. 2019, 14, 580–589. [Google Scholar] [CrossRef] [Green Version]
- Parmoon, G.; Ebadi, A.; Janbakhsh, S.; Moosav, S.A. Effects of Seed Priming on Catalase Activity and Storage Reservoirs of Aged Milk Thistle Seeds (Silybum marianum (L.) Gaertn). J. Agric. Sci.-Tarim Bilim. Derg. 2015, 21, 363–372. [Google Scholar] [CrossRef]
- Heydarian, Z.; Yu, M.; Gruber, M.; Glick, B.R.; Zhou, R.; Hegedus, D.D. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa. Front. Microbiol. 2016, 7, 1966. [Google Scholar] [CrossRef]
- Chakraborty, D.; Garg, R.N.; Tomar, R.K.; Dwivedi, B.S.; Aggarwal, P.; Singh, R.; Behera, U.K.; Thangasamy, A.; Singh, D. Soil Physical Quality as Influenced by Long-Term Application of Fertilizers and Manure Under Maize-Wheat System. Soil Sci. 2010, 175, 128–136. [Google Scholar] [CrossRef]
- Vo, T.S.; Vo, T.T.B.C.; Tran, T.T.; Pham, N.D. Enhancement of water absorption capacity and compressibility of hydrogel sponges prepared from gelatin/chitosan matrix with different polyols. Prog. Nat. Sci. Mater. Int. 2022, 32, 54–62. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Gong, Y.P.; Toivonen, P.M.A.; Lau, O.L.; Wiersma, P.A. Antioxidant system level in ‘Braeburn’ apple is related to its browning disorder. Bot. Bull. Acad. Sin. 2001, 42, 259–264. [Google Scholar]
- Nakano, Y.; Asada, K. Hydrogen-Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach-Chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Benthin, B.; Danz, H.; Hamburger, M. Pressurized liquid extraction of medicinal plants. J. Chromatogr. A 1999, 837, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Voothuluru, P.; Mäkelä, P.; Zhu, J.; Yamaguchi, M.; Cho, I.-J.; Oliver, M.J.; Simmonds, J.; Sharp, R.E. Apoplastic Hydrogen Peroxide in the Growth Zone of the Maize Primary Root. Increased Levels Differentially Modulate Root Elongation Under Well-Watered and Water-Stressed Conditions. Front. Plant Sci. 2020, 11, 392. [Google Scholar] [CrossRef] [Green Version]
- Lazcano, C.; Sampedro, L.; Zas, R.; Domínguez, J. Vermicompost enhances germination of the maritime pine (Pinus pinaster Ait.). New For. 2009, 39, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Fallah, M.; Hadi, H.; Amirnia, R.; Hassanzadeh-Ghorttapeh, A.; Zuan, A.T.K.; Sayyed, R.Z. Eco-friendly soil amendments improve growth, antioxidant activities, and root colonization in lingrain (Linum Usitatissimum L.) under drought conditions. PLoS ONE 2021, 16, e0261225. [Google Scholar] [CrossRef]
- Salehi, A.; Tasdighi, H.; Gholamhoseini, M. Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pac. J. Trop. Biomed. 2016, 6, 886–891. [Google Scholar] [CrossRef] [Green Version]
- Abrahimi, F.; Taghvaei, M.; Mastinu, A. Nano-Organic Coatings Improve Early Vigor of Brassica napus L. Seeds in Water Deficit. Agronomy-Basel 2023, 13, 390. [Google Scholar] [CrossRef]
- Heidari, F.; Shekari, F.; Andalibi, B.; Saba, J.; Uberti, D.; Mastinu, A. Comparative Effects of Four Plant Growth Regulators on Yield and Field Performance of Crocus sativus L. Horticulturae 2022, 8, 799. [Google Scholar] [CrossRef]
- Jam, B.J.; Shekari, F.; Andalibi, B.; Fotovat, R.; Jafarian, V.; Najafi, J.; Uberti, D.; Mastinu, A. Impact of Silicon Foliar Application on the Growth and Physiological Traits of Carthamus tinctorius L. Exposed to Salt Stress. Silicon-Neth 2023, 15, 1235–1245. [Google Scholar] [CrossRef]
- Kumar, A.; Memo, M.; Mastinu, A. Plant behaviour: An evolutionary response to the environment? Plant Biol. 2020, 22, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Zangani, E.; Afsahi, K.; Shekari, F.; Mac Sweeney, E.; Mastinu, A. Nitrogen and Phosphorus Addition to Soil Improves Seed Yield, Foliar Stomatal Conductance, and the Photosynthetic Response of Rapeseed (Brassica napus L.). Agriculture 2021, 11, 483. [Google Scholar] [CrossRef]
- Qiu, Y.; Amirkhani, M.; Mayton, H.; Chen, Z.; Taylor, A.G. Biostimulant Seed Coating Treatments to Improve Cover Crop Germination and Seedling Growth. Agronomy 2020, 10, 154. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Yang, Y.; Wang, G.; Yang, L.; Sun, X. Ecophysiological responses of Abies fabriseedlings to drought stress and nitrogen supply. Physiol. Plant. 2010, 139, 335–347. [Google Scholar] [CrossRef]
- Shi, Y.; Li, J.; Shao, J.; Deng, S.; Wang, R.; Li, N.; Sun, J.; Zhang, H.; Zhu, H.; Zhang, Y.; et al. Effects of Stockosorb and Luquasorb polymers on salt and drought tolerance of Populus popularis. Sci. Hortic. 2010, 124, 268–273. [Google Scholar] [CrossRef]
- Pandey, R.K.; Maranville, J.W.; Admou, A. Tropical wheat response to irrigation and nitrogen in a Sahelian environment. I. Grain yield, yield components and water use efficiency. Eur. J. Agron. 2001, 15, 93–105. [Google Scholar] [CrossRef]
- Terán-Chaves, C.A.; García-Prats, A.; Polo-Murcia, S.M. Water Stress Thresholds and Evaluation of Coefficient Ks for Perennial Ryegrass in Tropical Conditions. Water 2022, 14, 1696. [Google Scholar] [CrossRef]
- Fraser, T.E.; Silk, W.K.; Rost, T.L. Effects of low water potential on cortical cell length in growing regions of maize roots. Plant Physiol. 1990, 93, 648–651. [Google Scholar] [CrossRef] [Green Version]
- Ekren, S.; Sönmez, Ç.; Özçakal, E.; Kurttaş, Y.S.K.; Bayram, E.; Gürgülü, H. The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.). Agric. Water Manag. 2012, 109, 155–161. [Google Scholar] [CrossRef]
- Hossain, M.A.; Bhattacharjee, S.; Armin, S.M.; Qian, P.P.; Xin, W.; Li, H.Y.; Burritt, D.J.; Fujita, M.; Tran, L.S.P. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Front. Plant Sci. 2015, 6, 420. [Google Scholar] [CrossRef] [Green Version]
- ElSayed, A.I.; El-hamahmy, M.A.M.; Rafudeen, M.S.; Mohamed, A.H.; Omar, A.A. The Impact of Drought Stress on Antioxidant Responses and Accumulation of Flavonolignans in Milk Thistle (Silybum marianum (L.) Gaertn). Plants 2019, 8, 611. [Google Scholar] [CrossRef] [Green Version]
- Rico, C.M.; Hong, J.; Morales, M.I.; Zhao, L.J.; Barrios, A.C.; Zhang, J.Y.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effect of Cerium Oxide Nanoparticles on Rice: A Study Involving the Antioxidant Defense System and In Vivo Fluorescence Imaging. Environ. Sci. Technol. 2013, 47, 5635–5642. [Google Scholar] [CrossRef] [PubMed]
- Peighambari, S.A.; Samadi, B.Y.; Nabipour, A.; Charmet, G.; Sarrafi, A. QTL analysis for agronomic traits in a barley doubled haploids population grown in Iran. Plant Sci. 2005, 169, 1008–1013. [Google Scholar] [CrossRef]
- Singh-Sangwan, N.; Abad Farooqi, A.H.; Singh Sangwan, R. Effect of drought stress on growth and essential oil metabolism in lemongrasses. New Phytol. 2006, 128, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Hamid, B.; Zaman, M.; Farooq, S.; Fatima, S.; Sayyed, R.Z.; Baba, Z.A.; Sheikh, T.A.; Reddy, M.S.; El Enshasy, H.; Gafur, A.; et al. Bacterial Plant Biostimulants: A Sustainable Way towards Improving Growth, Productivity, and Health of Crops. Sustainability 2021, 13, 2856. [Google Scholar] [CrossRef]
- Grover, M.; Ali, S.Z.; Sandhya, V.; Rasul, A.; Venkateswarlu, B. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J. Microbiol. Biotechnol. 2010, 27, 1231–1240. [Google Scholar] [CrossRef]
- Fazeli-Nasab, B.; Sayyed, R.Z.; Piri, R.; Rahmani, A.F. Biopriming and Nanopriming: Green Revolution Wings to Increase Plant Yield, Growth, and Development Under Stress Condition and Forward Dimensions. In Antioxidants in Plant-Microbe Interaction; Springer: Singapore, 2021; pp. 623–655. [Google Scholar] [CrossRef]
- Singh, M. Proline and Salinity Tolerance in Plants. Biochem. Pharmacol. Open Access 2014, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Sagar, A.; Yadav, S.S.; Sayyed, R.Z.; Sharma, S.; Ramteke, P.W. Bacillus subtilis: A Multifarious Plant Growth Promoter, Biocontrol Agent, and Bioalleviator of Abiotic Stress. In Bacilli in Agrobiotechnology; Springer: Cham, Switzerland, 2022; pp. 561–580. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, L.; Gao, Y.; Yang, Q.; Dong, K.; Liu, T.; Feng, B. Comparative analysis of drought-responsive physiological and transcriptome in broomcorn millet (Panicum miliaceum L.) genotypes with contrasting drought tolerance. Ind. Crops Prod. 2022, 177, 114498. [Google Scholar] [CrossRef]
- Najafi, S.; Nazari Nasi, H.; Tuncturk, R.; Tuncturk, M.; Sayyed, R.Z.; Amirnia, R. Biofertilizer Application Enhances Drought Stress Tolerance and Alters the Antioxidant Enzymes in Medicinal Pumpkin (Cucurbita pepo convar. pepo var. Styriaca). Horticulturae 2021, 7, 588. [Google Scholar] [CrossRef]
Soil Texture | Bulk Density (g cm−3) | ECe (dS m) | pH | CEC (cmol + kg−1) | N (Total Nitrogen) % | P (Absorbable Potassium) | K (Absorbable Potassium) | * Fe (mg kg−1) | * Mn (mg kg−1) | * Zn (mg kg−1) | * Cu (mg kg−1) | OM (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Clay loam | 1.28 | 0.35 | 7.7 | 15 | 0.06 | 18 | 620 | 3.5 | 11.5 | 0.4 | 1.5 | 1.3 |
Soil Moisture Regimes | D1 | D2 | D3 | |
---|---|---|---|---|
SOC | ||||
Emergence rate | ||||
C1 | 0.132 ± 0.02 a | 0.117 ± 0.03 b | 0.109 ± 0.03 c | |
C2 | 0.09 ± 1.01 d | 0.082 ± 0.01 e | 0.082 ± 0.02 e | |
Proline contents (μmol g−1 FW) | ||||
C1 | 3.06 ± 0.02 c | 5.54 ± 0.09 b | 10.75 ± 0.05 a | |
C2 | 4.11 ± 0.03 c | 7.6 ± 0.09 b | 12.21 ± 0.06 a | |
Catalase activity (U g−1 FW) | ||||
C1 | 22.1 ± 0.04 c | 24.05 ± 0.06 b | 26.61 ± 0.09 a | |
C2 | 29.21 ± 0.04 c | 32.15 ± 0.01 b | 38.71 ± 0.09 a | |
Ascorbate peroxidase activity (U g−1 FW) | ||||
C1 | 843 ± 0.08 c | 935.61 ± 0.07 b | 985.4 ± 0.09 a | |
C2 | 943.93 ± 0.01 c | 1089.4 ± 0.04 b | 1237.32 ± 0.03 a | |
Shoot oil | ||||
C1 | 2.18 ± 0.02 a | 1.98 ± 0.03 b | 1.95 ± 0.01 b | |
C2 | 2.10 ± 0.04 a | 1.20 ± 0.04 c | 1.15 ± 0.01 c | |
Shoot extract | ||||
C1 | 0.82 ± 0.02 a | 0.80 ± 0.04 a | 0.76 ± 0.05 ab | |
C2 | 0.80 ± 0.04 a | 0.76 ± 0.03 ab | 0.71 ± 0.02 ab |
Soil Moisture Regimes | Emergence Rate (Seed per Day) | Leaf Area (cm2) | Root Length (cm) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Superabsorbent | D1 | D2 | D3 | D1 | D2 | D3 | D1 | D2 | D3 | |
S1 | 0.93 ± 0.02 g | 0.80 ± 0.02 h | 0.80 ± 0.01 h | 133.79 ± 11 d | 85.11 ± 16 ef | 66.30 ± 12 f | 21.37 ± 0.9 ef | 17.94 ± 1.3 hi | 15.60 ± 0.9 j | |
S2 | 1.1 ± 0.02 d–g | 0.92 ± 0.02 g | 0.80 ± 0.03 h | 173.24 ± 7 c | 124.76 ± 26 d | 96.42 ± 27 e | 22.43 ± 1.2 de | 18.29 ± 1.1 hi | 17.18 ± 1.3 i | |
S3 | 1.27 ± 0.03 b | 1. ± 0.02 c–e | 0.98 ± 0.02 e–g | 228.77 ± 29 b | 138.39 ± 24 d | 122.56 ± 12 d | 23.32 ± 2.4 cd | 23.29 ± 1.7 cd | 20.530 ± 0.8 fg | |
S4 | 1.4 ± 0.1 a | 1.2 ± 0.1 b | 1.1 ± 0.09 cd | 314.84 ± 19 a | 190.05 ± 23 c | 144.41 ± 38 d | 26.01 ± 4 a | 25.24 ± 1.1 ab | 24.94 ± 3.1 a–c | |
S5 | 0.480 ± 0.09 h | 0.77 ± 0.07 h | 0.78 ± 0.06 h | 134.42 ± 19 d | 90.41 ± 30 e | 79.62 ± 14 ef | 22.63 ± 1.6 de | 20.60 ± 2.2 fg | 18.13 ± 1.7 hi | |
S6 | 1.1 ± 0.05 c–f | 0.97 ± 0.03 fg | 1 ± 0.1 cf | 192.33 ± 18 | 133.24 ± 21 d | 96.64 ± 39 e | 23.13 ± 1.6 cd | 22.56 ± 2.2 de | 19.09 ± 1.7 gh | |
S7 | 1.18 ± 0.1 b | 1.1 ± 0.1 cd | 1.1 ± 0.09 cd | 241.26 ± 13 b | 197.80 ± 37 c | 142.27 ± 55 d | 24.75 ± 1.9 a–c | 23.83 ± 0.9 b–d | 23.94 ± 1.4 b–d |
Superabsorbent | S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
---|---|---|---|---|---|---|---|---|
SOC | ||||||||
C1 | 17.80 ± 3.3 gh | 19.69 ± 2.9 fg | 22.24 ± 3.2 de | 25.55 ± 3 bc | 20.53 ± 4 ef | 22.49 ± 3.4 de | 26.79 ± 2.7 b | |
C2 | 17.47 ± 4 h | 20.01 ± 3.7 f | 26.42 ± 3.5 b | 29.66 ± 2.5 a | 21.67 ± 4 d–f | 23.72 ± 3.2 cd | 26.03 ± 3.1 b |
Inoculation | Seedling Traits | D1 | D2 | D3 | D4 | Inoculation | Seedling Traits | D1 | D2 | D3 | D4 |
---|---|---|---|---|---|---|---|---|---|---|---|
I0 | EP | 95.33 ± 4 ab | 90.67 ± 0.5 bcd | 84.00 ± 4.7 defg | 76.67 ± 3.2 g | I0 | SL (cm) | 40.95 ± 0.8 b | 33.30 ± 1.2 bcdef | 31.45 ± 0.4 def | 26.19 ± 0.5 fg |
RP | 0.00 | 4.90 | 7.35 | 8.73 | RP | 0.00 | 18.68 | 23.19 | 36.04 | ||
I1 | EP | 97.67 ± 4.7 ab | 93 ± 2.8 abc | 90.33 ± 2.3 bcde | 86 ± 3 cdef | I1 | SL (cm) | 40.31 ± 1.2 b | 34.09 ± 1.4 bcdef | 31.69 ± 1.6 def | 22.22 ± 0.3 g |
RP | 0.00 | 4.78 | 2.87 | 4.80 | RP | 0.00 | 15.44 | 21.38 | 44.88 | ||
I2 | EP | 97.67 ± 2.3 ab | 85 ± 1.8 def | 82.33 ± 1.4 efg | 79.78 ± 2 fg | I2 | SL (cm) | 36.27 ± 1.3 bc | 34.79 ± 1.9 bcde | 31.27 ± 1.6 def | 23.64 ± 0.2 g |
RP | 0.00 | 12.97 | 3.14 | 3.10 | RP | 0.00 | 4.13 | 13.84 | 34.85 | ||
I3 | EP | 99.67 ± 0.4 a | 94.67 ± 1.4 ab | 90.33 ± 4.7 bcde | 86.33 ± 2.8 def | I3 | SL (cm) | 41.08 ± 0.2 b | 35.79 ± 0.8 bcdef | 29.05 ± 0.7 ef | 28.21 ± 0.4 fg |
RP | 0.00 | 5.02 | 4.58 | 4.43 | RP | 0.00 | 12.86 | 29.26 | 31.32 | ||
I0 | LA (cm2) | 91.57 ± 1.9 bcd | 84.11 ± 2.6 def | 78.17 ± 2.9 fg | 69.50 ± 2.3 h | I0 | SPAD | 96.67 ± 4 abc | 83.73 ± 0.5 abcd | 50.67 ± 4.7 fg | 35.67 ± 3.2 g |
RP | 0.00 | 8.33 | 14.80 | 24.25 | RP | 0.00 | 13.37 | 47.58 | 63.10 | ||
I1 | LA | 97.14 ± 1.01 ab | 91.97 ± 2.8 bc | 84.14 ± 3.3 def | 80.31 ± 3.2 efg | I1 | SPAD | 100.47 ± 4. 7 a | 92.67 ± 2.8 abc | 64.00 ± 2.3 def | 57.23 ± 3 ef |
RP | 0.00 | 5.33 | 13.38 | 17.33 | RP | 0.00 | 7.76 | 36.29 | 43.03 | ||
I2 | LA | 96.58 ± 1.9 ab | 86.35 ± 1.7 cde | 77.83 ± 1.2 fg | 73.33 ± 1.9 gh | I2 | SPAD | 98.77 ± 2.3 ab | 77.60 ± 1.8 bcde | 65.67 ± 1.4 def | 49 ± 2 fg |
RP | 0.00 | 10.59 | 19.41 | 24.07 | RP | 0.00 | 21.43 | 33.51 | 50.38. | ||
I3 | LA | 101.08 ± 0.01 a | 93.02 b ± 0.3 c | 89.07 ± 2.8 cd | 86.67 ± 3.3 cde | I3 | SPAD | 102.73 ± 0.4 a | 100.70 ± 1.4 a | 76.33 ± 4.7 cde | 60 ± 2.8 ef |
RP | 0.00 | 7.90 | 11.81 | 14.19 | RP | 0.00 | 1.98 | 25.70 | 41.59 | ||
I0 | RWC | 0.69 ± 0.04 bcd | 0.67 b ± 0.03 cdef | 0.66 ± 0.04 bcdef | 0.56 ± 0.02 ef | I0 | Shoot extract | 0.88 ± 0.5 a | 0.87 ± 0.04 a | 0.85 ± 0.09 ab | 0.80 ± 0.07 ab |
RP | 0.00 | 1.47 | 3.58 | 18.20 | RP | 0.0 | 0.36 | 1.77 | 4.55 | ||
I1 | RWC | 0.78 ± 0.04 ab | 0.72 ± 0.03 bc | 0.68 ± 0.12 bcde | 0.63 ± 0.23 cdef | I1 | Shoot extract | 0.95 ± 0.02 a | 0.90 ± 0.04 a | 0.86 ± 0.02 a | 0.84 ± 0.08 ab |
RP | 0.00 | 7.55 | 13.25 | 19.37 | RP | 0 | 2.28 | 4.48 | 4.33 | ||
I2 | RWC | 0.68 b ± 0.03 cde | 0.65 ± 0.02 cdef | 0.59 ± 0.03 def | 0.57 ± 0.4 ef | I2 | Shoot extract | 0.87 ± 0.07 a | 0.87 ± 0.03 a | 0.81 ± 0.04 ab | 0.75 ± 0.04 b |
RP | 0.00 | 2.49 | 12.62 | 15.31 | RP | 0 | 0.24 | 3.10 | 5.11 | ||
I3 | RWC | 0.88 ± 0.07 a | 0.71 ± 0.06 bc | 0.70 ± 0.09 bcd | 0.70 ± 0.1 bcd | I3 | Shoot extract | 0.86 ± 0.04 a | 0.76 ± 0.03 b | 0.78 ± 0.03 b | 0.63 ± 0.04 c |
RP | 0.00 | 18.14 | 19.08 | 20.22 | RP | 0 | 5.96 | 4.96 | 8.26 | ||
I0 | SWVI | 917.87 ± 4.7 cd | 799.93 ± 3.2 cde | 490 ± 5.2 ghij | 250.96 ± 6.2 j | I0 | Shoot oil | 2.18 ± 0.05 a | 2.13 ± 0.05 a | 1.98 ± 0.01 b | 1.87 ± 0.01 b |
RP | 0.00 | 20.60 | 27.49 | 50.47 | RP | 0 | 1.26 | 4.58 | 6.99 | ||
I1 | SWVI | 1167.54 ± 5.1 ab | 796.09 ± 9.8 cde | 550.43 ± 7.8 fghi | 364.73 ± 15 ij | I1 | Shoot oil | 2.2 ± 0.02 a | 2.14 ± 0.05 a | 2.11 ± 0.09 a | 2.03 ± 0.01 a |
RP | 0.00 | 18.13 | 33.13 | 45.97 | RP | 0 | 1.25 | 1.93 | 3.75 | ||
I2 | SWVI | 1017.40 ± 3.1 bc | 629.23 ± 10.1 efgh | 555.03 ± 6.8 efghi | 276 ± 7.3 j | I2 | Shoot oil | 2.1 ± 0.04 a | 2.05 ± 0.02 a | 2 ± 0.04 a | 1.83 ± 0.01 b |
RP | 0.00 | 15.97 | 25.03 | 47.31 | RP | 0 | 1.19 | 2.38 | 6.31 | ||
I3 | SWVI | 1342 ± 5.6 a | 939.68 ± 9.3 bc | 689.71 ± 3 bc | 431.66 ± 11 hij | I3 | Shoot oil | 2.06 ± 0.03 a | 1.99 ± 0.06 a | 1.76 ± 0.03 b | 1.73 ± 0.01 b |
RP | 0.00 | 21.25 | 37.63 | 41.88 | RP | 0 | 1.81 | 7.26 | 7.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghvaei, M.; Kordestani, M.D.; Saleh, M.; Mastinu, A. The Reinforcement of Early Growth, Extract, and Oil of Silybum marianum L. by Polymer Organic Cover and Bacteria Inoculation under Water Deficit. Soil Syst. 2023, 7, 61. https://doi.org/10.3390/soilsystems7020061
Taghvaei M, Kordestani MD, Saleh M, Mastinu A. The Reinforcement of Early Growth, Extract, and Oil of Silybum marianum L. by Polymer Organic Cover and Bacteria Inoculation under Water Deficit. Soil Systems. 2023; 7(2):61. https://doi.org/10.3390/soilsystems7020061
Chicago/Turabian StyleTaghvaei, Mansour, Mojtaba Dolat Kordestani, Mohammad Saleh, and Andrea Mastinu. 2023. "The Reinforcement of Early Growth, Extract, and Oil of Silybum marianum L. by Polymer Organic Cover and Bacteria Inoculation under Water Deficit" Soil Systems 7, no. 2: 61. https://doi.org/10.3390/soilsystems7020061
APA StyleTaghvaei, M., Kordestani, M. D., Saleh, M., & Mastinu, A. (2023). The Reinforcement of Early Growth, Extract, and Oil of Silybum marianum L. by Polymer Organic Cover and Bacteria Inoculation under Water Deficit. Soil Systems, 7(2), 61. https://doi.org/10.3390/soilsystems7020061