Zinc Presence during Mineral Formation Affects the Sorptive Reactivity of Manganese Oxide
Abstract
:1. Introduction
2. Methods
2.1. Synthesis of Pure and Zn-Coprecipitated δ-MnO2
2.2. Cation and Anion Sorption on Pure and Zn-Coprecipitated δ-MnO2
2.3. Cation and Anion Sorption on Zn-Sorbed δ-MnO2
3. Results and Discussion
3.1. Cation Sorption on Pure and Zn Coprecipitated δ-MnO2
3.2. Anion Sorption on Pure and Zn Coprecipitated δ-MnO2
3.2.1. Phosphate and Arsenate Sorption on Pure δ-MnO2
3.2.2. Phosphate and Arsenate Sorption on Zn Coprecipitated δ-MnO2
3.3. Effect of Zn Coprecipitation on the Sorptive Reactivity of δ-MnO2
3.3.1. Mechanisms for Cation Sorption on Zn-Coprecipitated δ-MnO2
3.3.2. Solid Phase Analysis for Anion Sorption on Zn-Coprecipitated δ-MnO2
3.3.3. Mechanisms for Anion Sorption on Zn-Coprecipitated δ-MnO2
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Taylor, R.; McKenzie, R.; Norrish, K. The mineralogy and chemistry of manganese in some Australian soils. Soil Res. 1964, 2, 235–248. [Google Scholar] [CrossRef]
- Manceau, A.; Lanson, B.; Drits, V.A. Structure of heavy metal sorbed birnessite. Part III: Results from powder and polarized extended X-ray absorption fine structure spectroscopy. Geochim. Cosmochim. Acta 2002, 66, 2639–2663. [Google Scholar] [CrossRef]
- Huang, P. Kinetics of redox reactions on manganese oxides and its impact on environmental quality. In Rates of Soil Chemical Processes; Soil Science Society of America: Madison, WI, USA, 1991; pp. 191–230. [Google Scholar]
- Trivedi, P.; Axe, L.; Tyson, T.A. XAS Studies of Ni and Zn Sorbed to Hydrous Manganese Oxide. Environ. Sci. Technol. 2001, 35, 4515–4521. [Google Scholar] [CrossRef] [PubMed]
- Peacock, C.L.; Sherman, D.M. Sorption of Ni by birnessite: Equilibrium controls on Ni in seawater. Chem. Geol. 2007, 238, 94–106. [Google Scholar] [CrossRef]
- Jenne, E.A. Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: The significant role of hydrous Mn and Fe oxides. Adv. Chem. 1968, 73, 337–387. [Google Scholar]
- Yin, H.; Tan, W.; Zheng, L.; Cui, H.; Qiu, G.; Liu, F.; Feng, X. Characterization of Ni-rich hexagonal birnessite and its geochemical effects on aqueous Pb2+/Zn2+ and As (III). Geochim. Cosmochim. Acta 2012, 93, 47–62. [Google Scholar] [CrossRef]
- Decrée, S.; Pourret, O.; Baele, J.-M. Rare earth element fractionation in heterogenite (CoOOH): Implication for cobalt oxidized ore in the Katanga Copperbelt (Democratic Republic of Congo). J. Geochem. Explor. 2015, 159, 290–301. [Google Scholar] [CrossRef]
- Manceau, A.; Silvester, E.; Bartoli, C.; Lanson, B.; Drits, V.A. Structural mechanism of Co2+ oxidation by the phyllomanganate buserite. Am. Mineral. 1997, 82, 1150–1175. [Google Scholar] [CrossRef]
- Yin, H.; Liu, Y.; Koopal, L.K.; Feng, X.; Chu, S.; Zhu, M.; Liu, F. High Co-doping promotes the transition of birnessite layer symmetry from orthogonal to hexagonal. Chem. Geol. 2015, 410, 12–20. [Google Scholar] [CrossRef]
- Yin, H.; Liu, F.; Feng, X.; Hu, T.; Zheng, L.; Qiu, G.; Koopal, L.K.; Tan, W. Effects of Fe doping on the structures and properties of hexagonal birnessites–Comparison with Co and Ni doping. Geochim. Cosmochim. Acta 2013, 117, 1–15. [Google Scholar] [CrossRef]
- Manceau, A.; Llorca, S.; Calas, G. Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochim. Cosmochim. Acta 1987, 51, 105–113. [Google Scholar] [CrossRef]
- Yin, H.; Feng, X.; Qiu, G.; Tan, W.; Liu, F. Characterization of Co-doped birnessites and application for removal of lead and arsenite. J. Hazard. Mater. 2011, 188, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.D.; Refson, K.; Sposito, G. Surface complexation of Pb (II) by hexagonal birnessite nanoparticles. Geochim. Cosmochim. Acta 2010, 74, 6731–6740. [Google Scholar] [CrossRef]
- Yin, H.; Feng, X.; Tan, W.; Koopal, L.K.; Hu, T.; Zhu, M.; Liu, F. Structure and properties of vanadium (V)-doped hexagonal turbostratic birnessite and its enhanced scavenging of Pb2+ from solutions. J. Hazard. Mater. 2015, 288, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Nelson, Y.M.; Lion, L.W.; Ghiorse, W.C.; Shuler, M.L. Production of biogenic Mn oxides by Leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics. Appl. Environ. Microbiol. 1999, 65, 175–180. [Google Scholar] [PubMed]
- Zhao, W.; Wang, Q.Q.; Liu, F.; Qiu, G.H.; Tan, W.F.; Feng, X.H. Pb2+ adsorption on birnessite affected by Zn2+ and Mn2+ pretreatments. J. Soils Sediments 2010, 10, 870–878. [Google Scholar] [CrossRef]
- Villalobos, M.; Bargar, J.; Sposito, G. Mechanisms of Pb (II) sorption on a biogenic manganese oxide. Environ. Sci. Technol. 2005, 39, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Peña, J.; Bargar, J.R.; Sposito, G. Copper sorption by the edge surfaces of synthetic birnessite nanoparticles. Chem. Geol. 2015, 396, 196–207. [Google Scholar] [CrossRef]
- Sherman, D.M.; Peacock, C.L. Surface complexation of Cu on birnessite (δ-MnO2): Controls on Cu in the deep ocean. Geochim. Cosmochim. Acta 2010, 74, 6721–6730. [Google Scholar] [CrossRef]
- Grangeon, S.; Manceau, A.; Guilhermet, J.; Gaillot, A.-C.; Lanson, M.; Lanson, B. Zn sorption modifies dynamically the layer and interlayer structure of vernadite. Geochim. Cosmochim. Acta 2012, 85, 302–313. [Google Scholar] [CrossRef]
- Boonfueng, T.; Axe, L.; Yee, N.; Hahn, D.; Ndiba, P.K. Zn sorption mechanisms onto sheathed Leptothrix discophora and the impact of the nanoparticulate biogenic Mn oxide coating. J. Colloid Interface Sci. 2009, 333, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Tani, Y.; Naitou, H.; Miyata, N.; Tojo, F.; Seyama, H. Zn (II) sequestration by fungal biogenic manganese oxide through enzymatic and abiotic processes. Chem. Geol. 2014, 383, 155–163. [Google Scholar] [CrossRef]
- Trivedi, P.; Axe, L. Modeling Cd and Zn sorption to hydrous metal oxides. Environ. Sci. Technol. 2000, 34, 2215–2223. [Google Scholar] [CrossRef]
- Tripathy, S.S.; Bersillon, J.-L.; Gopal, K. Adsorption of Cd2+ on hydrous manganese dioxide from aqueous solutions. Desalination 2006, 194, 11–21. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, X.; Villalobos, M.; Tan, W.; Liu, F. Sorption behavior of heavy metals on birnessite: Relationship with its Mn average oxidation state and implications for types of sorption sites. Chem. Geol. 2012, 292–293, 25–34. [Google Scholar] [CrossRef]
- Kwon, K.D.; Refson, K.; Sposito, G. Understanding the trends in transition metal sorption by vacancy sites in birnessite. Geochim. Cosmochim. Acta 2013, 101, 222–232. [Google Scholar] [CrossRef]
- Kawashima, M.; Tainaka, Y.; Hori, T.; Koyama, M.; Takamatsu, T. Phosphate adsorption onto hydrous manganese(IV) oxide in the presence of divalent cations. Water Res. 1986, 20, 471–475. [Google Scholar] [CrossRef]
- Grangeon, S.; Lanson, B.; Lanson, M.; Manceau, A. Crystal structure of Ni-sorbed synthetic vernadite: A powder X-ray diffraction study. Mineral. Mag. 2008, 72, 1279–1291. [Google Scholar] [CrossRef] [Green Version]
- Power, L.E.; Arai, Y.; Sparks, D.L. Zinc adsorption effects on arsenite oxidation kinetics at the birnessite-water interface. Environ. Sci. Technol. 2005, 39, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Villalobos, M.; Escobar-Quiroz, I.N.; Salazar-Camacho, C. The influence of particle size and structure on the sorption and oxidation behavior of birnessite: I. Adsorption of As (V) and oxidation of As (III). Geochim. Cosmochim. Acta 2014, 125, 564–581. [Google Scholar] [CrossRef]
- Qin, Z.; Xiang, Q.; Liu, F.; Xiong, J.; Koopal, L.K.; Zheng, L.; Ginder-Vogel, M.; Wang, M.; Feng, X.; Tan, W. Local structure of Cu2+ in Cu-doped hexagonal turbostratic birnessite and Cu2+ stability under acid treatment. Chem. Geol. 2017, 4666, 512–523. [Google Scholar] [CrossRef]
- Opfergelt, S.; Cornélis, J.-T.; Houben, D.; Givron, C.; Burton, K.; Mattielli, N. The influence of weathering and soil organic matter on Zn isotopes in soils. Chem. Geol. 2017, 466, 140–148. [Google Scholar] [CrossRef]
- Hinkle, M.A.; Dye, K.G.; Catalano, J.G. Impact of Mn (II)-Manganese Oxide Reactions on Ni and Zn Speciation. Environ. Sci. Technol. 2017, 51, 3187–3196. [Google Scholar] [CrossRef] [PubMed]
- Drits, V.A.; Lanson, B.; Bougerol-Chaillout, C.; Gorshkov, A.I.; Manceau, A. Structure of heavy-metal sorbed birnessite: Part 2. Results from electron diffraction. Am. Mineral. 2002, 87, 1646–1661. [Google Scholar] [CrossRef]
- Yu, Q.; Sasaki, K.; Tanaka, K.; Ohnuki, T.; Hirajima, T. Zinc sorption during bio-oxidation and precipitation of manganese modifies the layer stacking of biogenic birnessite. Geomicrobiol. J. 2013, 30, 829–839. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Q.; Sun, J.; Borkiewicz, O.; Huang, R.; Saad, E.; Fields, B.; Chen, S.; Zhu, M.; Tang, Y. Effect of Zn2+ presence during mineral formation on the structure of layered Mn oxides. Chem. Geol. Submitted in 2017.
- Jenkyns, H.C. Fossil manganese nodules from the west Sicilian Jurassic. Eclogae Geol. Helv. 1970, 63, 741–774. [Google Scholar]
- Childs, C.W. Composition of iron-manganese concretions from some New Zealand soils. Geoderma 1975, 13, 141–152. [Google Scholar] [CrossRef]
- Manceau, A.; Tamura, N.; Celestre, R.S.; MacDowell, A.A.; Geoffroy, N.; Sposito, G.; Padmore, H.A. Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi Basin. Environ. Sci. Technol. 2003, 37, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Zhang, G.; Heaney, P.J.; Webb, S.M.; Burgos, W.D. Characterization of manganese oxide precipitates from Appalachian coal mine drainage treatment systems. Appl. Geochem. 2010, 25, 389–399. [Google Scholar] [CrossRef]
- Lanson, B.; Marcus, M.A.; Fakra, S.; Panfili, F.; Geoffroy, N.; Manceau, A. Formation of Zn–Ca phyllomanganate nanoparticles in grass roots. Geochim. Cosmochim. Acta 2008, 72, 2478–2490. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.-T.; Zheng, Y.-M.; Zhang, L.-M.; He, J.-Z. Biogenic Mn oxides for effective adsorption of Cd from aquatic environment. Environ. Pollut. 2009, 157, 2577–2583. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Li, Y.; Hua, X. Investigation of Fe, Mn oxides and organic material in surface coatings and Pb, Cd adsorption to surface coatings developed in different natural waters. Microchem. J. 2001, 70, 25–33. [Google Scholar] [CrossRef]
- Yao, W.; Millero, F.J. Adsorption of Phosphate on Manganese Dioxide in Seawater. Environ. Sci. Technol. 1996, 30, 536–541. [Google Scholar] [CrossRef]
- Violante, A.; Pigna, M. Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci. Soc. Am. J. 2002, 66, 1788–1796. [Google Scholar] [CrossRef]
- Liu, F.; De Cristofaro, A.; Violante, A. Effect of pH, phosphate and oxalate on the adsorption/desorption of arsenate on/from goethite. Soil Sci. 2001, 166, 197–208. [Google Scholar] [CrossRef]
- Baldwin, D.S.; Beattie, J.K.; Coleman, L.M.; Jones, D.R. Hydrolysis of an organophosphate ester by manganese dioxide. Environ. Sci. Technol. 2001, 35, 713–716. [Google Scholar] [CrossRef] [PubMed]
- McCarty, K.M.; Hanh, H.T.; Kim, K.W. Arsenic geochemistry and human health in South East Asia. Rev. Environ. Health 2011, 26, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, J.I.; Tani, Y.; Miyata, N.; Seyama, H.; Mitsunobu, S.; Naitou, H. Concurrent sorption of As (V) and Mn (II) during biogenic manganese oxide formation. Chem. Geol. 2012, 306, 123–128. [Google Scholar] [CrossRef]
- Marcus, M.A.; Manceau, A.; Kersten, M. Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule. Geochim. Cosmochim. Acta 2004, 68, 3125–3136. [Google Scholar] [CrossRef]
- Zhu, M.; Farrow, C.L.; Post, J.E.; Livi, K.J.T.; Billinge, S.J.L.; Ginder-Vogel, M.; Sparks, D.L. Structural study of biotic and abiotic poorly-crystalline manganese oxides using atomic pair distribution function analysis. Geochim. Cosmochim. Acta 2012, 81, 39–55. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J. A modified single solution method for determination of phosphate uptake by rye. Soil Sci. Soc. Am. Proc. 1952, 48, 31–36. [Google Scholar]
- Lenoble, V.; Deluchat, V.; Serpaud, B.; Bollinger, J.-C. Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta 2003, 61, 267–276. [Google Scholar] [CrossRef]
- Balistrieri, L.S.; Chao, T. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochim. Cosmochim. Acta 1990, 54, 739–751. [Google Scholar] [CrossRef]
- Mustafa, S.; Zaman, M.I.; Khan, S. pH effect on phosphate sorption by crystalline MnO2. J. Colloid Interface Sci. 2006, 301, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, S.; Zaman, M.I.; Khan, S. Temperature effect on the mechanism of phosphate anions sorption by β-MnO2. Chem. Eng. J. 2008, 141, 51–57. [Google Scholar] [CrossRef]
- Ouvrard, S.; Simonnot, M.-O.; Sardin, M. Reactive behavior of natural manganese oxides toward the adsorption of phosphate and arsenate. Ind. Eng. Chem. Res. 2002, 41, 2785–2791. [Google Scholar] [CrossRef]
- Sparks, D.L. Evrionmental Soil Chemistru; Academic Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Manning, B.A.; Fendorf, S.E.; Bostick, B.; Suarez, D.L. Arsenic (III) oxidation and arsenic (V) adsorption reactions on synthetic birnessite. Environ. Sci. Technol. 2002, 36, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, E.; Ciminelli, V.S.; Weidler, P.G.; Ramos, A.Y. Arsenic sorption onto soils enriched in Mn and Fe minerals. Clays Clay Miner. 2003, 51, 197–204. [Google Scholar] [CrossRef]
- Wang, Q.; Liao, X.; Xu, W.; Ren, Y.; Livi, K.J.; Zhu, M. Synthesis of Birnessite in the Presence of Phosphate, Silicate, or Sulfate. Inorg. Chem. 2016, 55, 10248–10258. [Google Scholar] [CrossRef] [PubMed]
- Lanson, B.; Drits, V.A.; Gaillot, A.-C.; Silvester, E.; Plançon, A.; Manceau, A. Structure of heavy-metal sorbed birnessite: Part 1. Results from X-ray diffraction. Am. Mineral. 2002, 87, 1631–1645. [Google Scholar] [CrossRef]
- Li, H.; Liu, F.; Zhu, M.; Feng, X.; Zhang, J.; Yin, H. Structure and properties of Co-doped cryptomelane and its enhanced removal of Pb2+ and Cr3+ from wastewater. J. Environ. Sci. 2015, 34, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Liu, F.; Feng, X.; Liu, M.; Tan, W.; Qiu, G. Co2+-exchange mechanism of birnessite and its application for the removal of Pb2+ and As (III). J. Hazard. Mater. 2011, 196, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, B.J.; Ginder-Vogel, M.; Zhu, M.; Livi, K.J.; Sparks, D.L. Arsenite oxidation by a poorly crystalline manganese-oxide. 2. Results from X-ray absorption spectroscopy and X-ray diffraction. Environ. Sci. Technol. 2010, 44, 8467–8472. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.D.; Refson, K.; Sposito, G. Zinc surface complexes on birnessite: A density functional theory study. Geochim. Cosmochim. Acta 2009, 73, 1273–1284. [Google Scholar] [CrossRef]
- Zeng, L.; Li, X.; Liu, J. Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Res. 2004, 38, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Tanada, S.; Kabayama, M.; Kawasaki, N.; Sakiyama, T.; Nakamura, T.; Araki, M.; Tamura, T. Removal of phosphate by aluminum oxide hydroxide. J. Colloid Interface Sci. 2003, 257, 135–140. [Google Scholar] [CrossRef]
- Dixit, S.; Hering, J.G. Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 2003, 37, 4182–4189. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, T.; Kawashima, M.; Koyama, M. The role of Mn2+-rich hydrous manganese oxide in the accumulation of arsenic in lake sediments. Water Res. 1985, 19, 1029–1032. [Google Scholar] [CrossRef]
Sample | Sample Label | Initial Zn/Mn Molar Ratio | Zn/Mn Molar Ratio in Final Solids | Zn Uptake (mmol/g) |
---|---|---|---|---|
Pure δ-MnO2 | pure | 0 | 0 | 0 |
Zn-coprecipitated δ-MnO2 | coppt0.05 | 0.05 | 0.04 | 0.36 |
coppt0.20 | 0.20 | 0.21 | 1.50 | |
Zn-sorbed δ-MnO2 | sorb0.07 | 0.07 | 0.06 | 0.42 |
sorb0.20 | 0.20 | 0.15 | 0.99 | |
sorb0.30 | 0.30 | 0.19 | 1.30 | |
sorb0.60 | 0.60 | 0.31 | 1.69 |
Mn Oxide | Cd Isotherm | P Isotherm | As Isotherm | ||||||
---|---|---|---|---|---|---|---|---|---|
Cmax | K | R2 | Cmax | K | R2 | Cmax | K | R2 | |
pure | 1.49 | 3.77 | 0.91 | 81.3 | 0.02 | 0.95 | 109.4 | 0.05 | 0.94 |
coppt0.05 | 1.38 | 3.19 | 0.99 | 120.4 | 0.04 | 0.96 | 162.2 | 0.07 | 0.99 |
coppt0.20 | 1.20 | 4.11 | 0.93 | 186.2 | 0.25 | 0.98 | 218.0 | 0.14 | 0.98 |
sorb0.20 | 1.10 | 3.08 | 0.99 | - | - | - | - | - | - |
Mn Oxide Type | P Kinetics | As Kinetics | ||||
---|---|---|---|---|---|---|
k | Qe | R2 | k | Qe | R2 | |
pure | 0.4217 | 43.4857 | 0.9176 | 0.6534 | 76.7312 | 0.9824 |
coppt0.05 | 0.6221 | 65.9621 | 0.9697 | 0.7433 | 98.7929 | 0.9495 |
coppt0.20 | 0.6936 | 128.688 | 0.9643 | 0.6985 | 137.8668 | 0.9615 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Li, C.; Liu, P.; Huang, R.; Saad, E.M.; Tang, Y. Zinc Presence during Mineral Formation Affects the Sorptive Reactivity of Manganese Oxide. Soil Syst. 2018, 2, 19. https://doi.org/10.3390/soilsystems2020019
Zhao S, Li C, Liu P, Huang R, Saad EM, Tang Y. Zinc Presence during Mineral Formation Affects the Sorptive Reactivity of Manganese Oxide. Soil Systems. 2018; 2(2):19. https://doi.org/10.3390/soilsystems2020019
Chicago/Turabian StyleZhao, Shiliang, Chenning Li, Pan Liu, Rixiang Huang, Emily M. Saad, and Yuanzhi Tang. 2018. "Zinc Presence during Mineral Formation Affects the Sorptive Reactivity of Manganese Oxide" Soil Systems 2, no. 2: 19. https://doi.org/10.3390/soilsystems2020019
APA StyleZhao, S., Li, C., Liu, P., Huang, R., Saad, E. M., & Tang, Y. (2018). Zinc Presence during Mineral Formation Affects the Sorptive Reactivity of Manganese Oxide. Soil Systems, 2(2), 19. https://doi.org/10.3390/soilsystems2020019