Nutritional, Health and Lifestyle Status of a Highly Physically Active and Health-Conscious Long-Term Vegan Man: A Case Report from Slovenia
Abstract
:1. Introduction
2. Methods
2.1. Study Characteristics
2.2. Subject
2.3. Assessed Variables
2.3.1. Sociodemographic Factors, Economic Status, and Motive for Vegan Diet Adoption
2.3.2. Anthropometric and Body Composition Parameters
2.3.3. Dietary Intake
2.3.4. Health Status
2.3.5. Lifestyle Status
2.4. Statistical Analysis
3. Outcome
3.1. Sociodemographic Factors, Economic Status, and Motive for Following a Vegan Diet
3.2. Anthropometrics and Body Composition Parameters
3.3. Dietary and Food Group Intake
3.4. Health and Lifestyle Status
3.5. Lifestyle Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Pilar Vaquero, M. Foods for Plant-Based Diets: Challenges and Innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Wirnitzer, K.C. Vegan Diet in Sports and Exercise—Health Benefits and Advantages to Athletes and Physically Active People: A Narrative Review. Int. J. Sport. Exerc. Med. 2020, 6, 166. [Google Scholar] [CrossRef]
- Jakše, B. Placing a Well-Designed Vegan Diet for Slovenes. Nutrients 2021, 13, 4545. [Google Scholar] [CrossRef] [PubMed]
- Ornish, D. A New Unified Theory of Lifestyle Medicine. Int. J. Dis. Reversal an Prev. 2022, 4, 1–5. [Google Scholar] [CrossRef]
- Gallagher, C.T.; Hanley, P.; Lane, K.E. Pattern analysis of vegan eating reveals healthy and unhealthy patterns within the vegan diet. Public Health Nutr. 2021, 25, 1310–1320. [Google Scholar] [CrossRef] [PubMed]
- Campbell, T.C. Nutritional Renaissance and Public Health Policy. J. Nutr. Biol. 2017, 3, 124–138. [Google Scholar] [CrossRef]
- Storz, M.A. What makes a plant-based diet? A review of current concepts and proposal for a standardized plant-based dietary intervention checklist. Eur. J. Clin. Nutr. 2022, 76, 789–800. [Google Scholar] [CrossRef]
- Dewell, A.; Weidner, G.; Sumner, M.D.; Chi, C.S.; Ornish, D. A Very-Low-Fat Vegan Diet Increases Intake of Protective Dietary Factors and Decreases Intake of Pathogenic Dietary Factors. J. Am. Diet. Assoc. 2008, 108, 347–356. [Google Scholar] [CrossRef]
- Dinu, M.; Abbate, R.; Gensini, G.F.; Casini, A.; Sofi, F. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3640–3649. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Halloran, A.; Rippin, H.L.; Oikonomidou, A.C.; Dardavesis, T.I.; Williams, J.; Wickramasinghe, K.; Breda, J.; Chourdakis, M. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin. Nutr. 2020, 40, 3503–3521. [Google Scholar] [CrossRef]
- Slywitch, E.; Savalli, C.; Duarte, A.C.; Escrivão, M.A.M.S. Obese Vegetarians and Omnivores Show Different Metabolic Changes: Analysis of 1340 Individuals. Nutrients 2022, 14, 2204. [Google Scholar] [CrossRef] [PubMed]
- Nebl, J.; Schuchardt, J.P.; Ströhle, A.; Wasserfurth, P.; Haufe, S.; Eigendorf, J.; Tegtbur, U.; Hahn, A. Micronutrient Status of Recreational Runners with Vegetarian or Non-Vegetarian Dietary Patterns. Nutrients 2019, 11, 1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neufingerl, N.; Eilander, A. Nutrient Intake and Status in Adults Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Nutrients 2021, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Allen, N.E.; Appleby, P.N.; Davey, G.K.; Key, T.J. Hormones and diet: Low insulin-like growth factor-I but normal bioavailable androgens in vegan men. Br. J. Cancer 2000, 83, 95–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Key, T.J.A.; Roe, L.; Thorogood, M.; Moore, J.W.; Clark, G.M.G.; Wang, D.Y. Testosterone, sex hormone-binding globulin, calculated free testosterone, and oestradiol in male vegans and omnivores. Br. J. Nutr. 1990, 64, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Craddock, J.C.; Probst, Y.C.; Neale, E.P.; Peoples, G.E. A Cross-Sectional Comparison of the Whole Blood Fatty Acid Profile and Omega-3 Index of Male Vegan and Omnivorous Endurance Athletes. J. Am. Nutr. Assoc. 2022, 41, 333–341. [Google Scholar] [CrossRef]
- Elmadfa, I.; Singer, I. Vitamin B-12 and homocysteine status among vegetarians: A global perspective. Am. J. Clin. Nutr. 2009, 89, 1693S–1698S. [Google Scholar] [CrossRef] [Green Version]
- Groufh-Jacobsen, S.; Hess, S.Y.; Aakre, I.; Gjengedal, E.L.F.; Pettersen, K.B.; Henjum, S. Vegans, Vegetarians and Pescatarians Are at Risk of Iodine Deficiency in Norway. Nutrients 2020, 12, 3555. [Google Scholar] [CrossRef]
- Jakše, B.; Jakše, B.; Godnov, U.; Pinter, S. Nutritional, Cardiovascular Health and Lifestyle Status of ‘Health Conscious’ Adult Vegans and Non-Vegans from Slovenia: A Cross-Sectional Self-Reported Survey. Int. J. Environ. Res. Public Health 2021, 18, 5968. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Jakše, B.; Jakše, B.; Pinter, S.; Pajek, J.; Fidler Mis, N. Whole-Food Plant-Based Lifestyle Program and Decreased Obesity. Am. J. Lifestyle Med. 2022, 16, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Clarys, P.; Deliens, T.; Huybrechts, I.; Deriemaeker, P.; Vanaelst, B.; De Keyzer, W.; Hebbelinck, M.; Mullie, P. Comparison of nutritional quality of the vegan, vegetarian, semi-vegetarian, pesco-vegetarian and omnivorous diet. Nutrients 2014, 6, 1318–1332. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Public Health of Slovenia & Partners »EU Menu Slovenija« Potek ankete mladostnik/odrali LOT 2. Available online: https://www.nijz.si/sites/www.nijz.si/files/uploaded/p-5_priloga_k_specifikaciji_2_a.pdf (accessed on 10 August 2019).
- WHO. Body Mass Index—BMI. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 30 September 2019).
- WHO. Physical Status: The Use and Intepretation of Anthropometry. Report of a WHO Expert Committee. Available online: https://www.who.int/childgrowth/publications/physical_status/en/ (accessed on 30 September 2019).
- Looker, A.C.; Borrud, L.G.; Hughes, J.P.; Fan, B.; Shepherd, J.A.; Sherman, M. Total body bone area, bone mineral content, and bone mineral density for individuals aged 8 years and over: United States, 1999–2006. Data Natl. Health Surv. 2013, 253, 1–78. [Google Scholar]
- OPKP Computer Web-Based Software: The Open Platform for Clinical Nutrition (OPEN). Available online: http://www.opkp.si/sl_SI/fooddiary/diary (accessed on 28 July 2019).
- Korošec, M.; Golob, T.; Bertoncelj, J.; Stibilj, V.; Seljak, B.K. The Slovenian food composition database. Food Chem. 2013, 140, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Food Energy—Methods of Analysis and Conversion Factors; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- U.S Department of Agriculture USDA. FDA and ODS-NIH Database for the Iodine Content of Common Foods Release 1.0. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/methods-and-application-of-food-composition-laboratory/mafcl-site-pages/iodine/ (accessed on 4 February 2022).
- Seljak, B.K.; Valenčič, E.; Hristov, H.; Hribar, M.; Lavriša, Ž.; Kušar, A.; Žmitek, K.; Krušič, S.; Gregorič, M.; Blaznik, U.; et al. Inadequate Intake of Dietary Fibre in Adolescents, Adults, and Elderlies: Results of Slovenian Representative SI. Menu Study. Nutrients 2021, 13, 3826. [Google Scholar] [CrossRef]
- Institute of Medicine (US). Dietary Reference Intakes for Thiamin. Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academies Press (United States): Washington, DC, USA, 1998. Available online: https://www.ncbi.nlm.nih.gov/books/NBK114310/ (accessed on 15 July 2022).
- National Institute of Public Health of Slovenia. Reference Values for Energy Intake and Nutrient Intake; National Institute of Public Health of Slovenia: Ljubljana, Slovenia, 2020; Available online: https://www.nijz.si/sites/www.nijz.si/files/uploaded/referencne_vrednosti_2020_3_2.pdf (accessed on 15 July 2022).
- German Nutrition Society, Austrian Nutrition Society, Swiss Society of Nutrition Research, the S.A. for N. Ergaenzlieferung D-A-CH Referenzwerte für die Nährstoffzufuhr (Reference Values for Nutrient Intake). 2018, pp. 1–56. Available online: https://www.dge-medienservice.de/d-a-ch-referenzwerte-fur-die-nahrstoffzufuhr.html (accessed on 21 October 2019).
- Jungert, A.; Ellinger, S.; Watzl, B.; Richter, M. Revised D-A-CH reference values for the intake of biotin. Eur. J. Nutr. 2022, 61, 1779–1787. [Google Scholar] [CrossRef]
- Scientific Advisory Committee on Nutrition. Carbohydrates and Health; The Stationery Office: London, UK, 2015. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/445503/SACN_Carbohydrates_and_Health.pdf (accessed on 21 October 2019).
- EFSA. Dietary Reference Values for nutrients Summary report. EFSA Support. Publ. 2017, 14, e15121. [Google Scholar] [CrossRef] [Green Version]
- Hribar, M.; Hristov, H.; Lavriša, Ž.; Seljak, B.K.; Gregorič, M.; Blaznik, U.; Žmitek, K.; Pravst, I. Vitamin D Intake in Slovenian Adolescents, Adults, and the Elderly Population. Nutrients 2021, 13, 3528. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef]
- Osuna-Padilla, I.A.; Leal-Escobar, G.; Garza-García, C.A.; Rodríguez-Castellanos, F.E. Dietary acid load: Mechanisms and evidence of its health repercussions. Nefrol. Engl. Ed. 2019, 39, 343–354. [Google Scholar] [CrossRef]
- Frassetto, L.A.; Todd, K.M.; Morris, R.C.; Sebastian, A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 1998, 68, 576–583. [Google Scholar] [CrossRef] [PubMed]
- University Medical Centre Ljubljana. Laboratorijski Vodnik; University Medical Centre Ljubljana: Ljubljana, Slovenia, 2018; Available online: https://lab.biarti.si/ (accessed on 15 July 2022).
- University Medical Centre Ljubljana. Orientacijski Referenčni Intervali; University Medical Centre Ljubljana: Ljubljana, Slovenia, 2017; Available online: https://www.kclj.si/dokumenti/RK-SEZ-07_SEZNAM_ORIENTACIJSKIH_REFERENCNIH_INTERVALOV_ver_41.pdf (accessed on 15 July 2022).
- Visseren, F.L.J.; MacH, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- WHO. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers, 3rd ed.; World Health Organization: Geneva, Switzerland, 2007; Available online: https://apps.who.int/iris/handle/10665/43781 (accessed on 15 July 2022).
- SYNLAB Holding Deutschland GmbH. International Parameter Index. 2022. Available online: https://extern.synlab.com/Catalog/?idLoc=83 (accessed on 15 July 2022).
- McBurney, M.I.; Tintle, N.L.; Harris, W.S. Omega-3 index is directly associated with a healthy red blood cell distribution width. Prostaglandins Leukot. Essent. Fat. Acids 2022, 176, 102376. [Google Scholar] [CrossRef] [PubMed]
- Hagströmer, M.; Oja, P.; Sjöström, M. The International Physical Activity Questionnaire (IPAQ): A study of concurrent and construct validity. Public Health Nutr. 2006, 9, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Levenstein, S.; Prantera, C.; Varvo, V.; Scribano, M.L.; Berto, E.; Luzi, C.; Andreoli, A. Development of the Perceived Stress Questionnaire: A new tool for psychosomatic research. J. Psychosom. Res. 1993, 37, 19–32. [Google Scholar] [CrossRef]
- Jakše, B.; Jakše, B.; Pinter, S.; Pajek, J.; Fidler Mis, N. Characteristics of Slovenian Adults in Community-Based Whole-Food Plant-Based Lifestyle Program. J. Nutr. Metab. 2020, 2020, 6950530. [Google Scholar] [CrossRef]
- WHO Guideline: Sugars Intake for Adults and Children. Available online: https://www.who.int/publications/i/item/9789241549028 (accessed on 19 July 2022).
- Pinter, S.; Jakše, B. Prehranski in zdravstveni status telesno zelo dejavnega odraslega moškega, ki dolgotrajno uživa rastlinsko prehrano: Študija primera. Šport 2022, 70, 92–107. [Google Scholar]
- Tran, E.; Dale, H.F.; Jensen, C.; Lied, G.A. Effects of Plant-Based Diets on Weight Status: A Systematic Review. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 3433–3448. [Google Scholar] [CrossRef]
- Barnard, N.D.; Alwarith, J.; Rembert, E.; Brandon, L.; Nguyen, M.; Goergen, A.; Horne, T.; do Nascimento, G.F.; Lakkadi, K.; Tura, A.; et al. A Mediterranean Diet and Low-Fat Vegan Diet to Improve Body Weight and Cardiometabolic Risk Factors: A Randomized, Cross-over Trial. J. Am. Coll. Nutr. 2021, 41, 127–139. [Google Scholar] [CrossRef]
- Schick, A.; Boring, J.; Courville, A.; Gallagher, I.; Guo, J.; Howard, R.; Milley, L.; Raisinger, K.; Rozga, I.; Stagliano, M.; et al. Effects of Ad Libitum Low Carbohydrate Versus Low Fat Diets on Body Weight and Fat Mass. Curr. Dev. Nutr. 2020, 4, 658. [Google Scholar] [CrossRef]
- Turner-McGrievy, G.M.; Davidson, C.R.; Wingard, E.E.; Wilcox, S.; Frongillo, E.A. Comparative effectiveness of plant-based diets for weight loss: A randomized controlled trial of five different diets. Nutrition 2015, 31, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Ghesmaty Sangachin, M.; Cavuoto, L.A.; Wang, Y. Use of various obesity measurement and classification methods in occupational safety and health research: A systematic review of the literature. BMC Obes. 2018, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Okorodudu, D.O.; Jumean, M.F.; Montori, V.M.; Romero-Corral, A.; Somers, V.K.; Erwin, P.J.; Lopez-Jimenez, F. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: A systematic review and meta-analysis. Int. J. Obes. 2010, 34, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Lingesh, G.; Khoo, S.; Mohamed, M.N.A.; Taib, N.A.; Group, M. Comparing physical activity levels of Malay version of the IPAQ and GPAQ with accelerometer in nurses. Int. J. Appl. Exerc. Physiol. 2016, 5, 8–17. [Google Scholar]
- Karlsen, M.; Rogers, G.; Miki, A.; Lichtenstein, A.; Folta, S.; Economos, C.; Jacques, P.; Livingston, K.; McKeown, N.; Karlsen, M.C.; et al. Theoretical Food and Nutrient Composition of Whole-Food Plant-Based and Vegan Diets Compared to Current Dietary Recommendations. Nutrients 2019, 11, 625. [Google Scholar] [CrossRef] [Green Version]
- Lavriša, Ž.; Hristov, H.; Hribar, M.; Žmitek, K.; Kušar, A.; Koroušić Seljak, B.; Gregorič, M.; Blaznik, U.; Gregorič, N.; Zaletel, K.; et al. Dietary Intake and Status of Vitamin B12 in Slovenian Population. Nutrients 2022, 14, 334. [Google Scholar] [CrossRef]
- Nebl, J.; Schuchardt, J.P.; Wasserfurth, P.; Haufe, S.; Eigendorf, J.; Tegtbur, U.; Hahn, A. Characterization, dietary habits and nutritional intake of omnivorous, lacto-ovo vegetarian and vegan runners—A pilot study. BMC Nutr. 2019, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; Zimmermann-Klemd, A.M.; Lederer, A.K.; Hannibal, L.; Kowarschik, S.; Huber, R.; Storz, M.A. A Vegan Diet Is Associated with a Significant Reduction in Dietary Acid Load: Post Hoc Analysis of a Randomized Controlled Trial in Healthy Individuals. Int. J. Environ. Res. Public Health 2021, 18, 9998. [Google Scholar] [CrossRef]
- Kahleova, H.; McCann, J.; Alwarith, J.; Rembert, E.; Tura, A.; Holubkov, R.; Barnard, N.D. A plant-based diet in overweight adults in a 16-week randomized clinical trial: The role of dietary acid load. Clin. Nutr. ESPEN 2021, 44, 150–158. [Google Scholar] [CrossRef]
- Ströhle, A.; Waldmann, A.; Koschizke, J.; Leitzmann, C.; Hahn, A. Diet-Dependent Net Endogenous Acid Load of Vegan Diets in Relation to Food Groups and Bone Health-Related Nutrients: Results from the German Vegan Study. Ann. Nutr. Metab. 2011, 59, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Storz, M.A.; Müller, A.; Ronco, A.L. Nutrient Intake and Dietary Acid Load of Special Diets in the NHANES: A Descriptive Analysis (2009–2018). Int. J. Environ. Res. Public Health 2022, 19, 5748. [Google Scholar] [CrossRef] [PubMed]
- Storz, M.A.; Ronco, A.L. Reduced dietary acid load in U.S. vegetarian adults: Results from the National Health and Nutrition Examination Survey. Food Sci. Nutr. 2022, 10, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, P.; Abbasalizad Farhangi, M. Dietary acid load, blood pressure, fasting blood sugar and biomarkers of insulin resistance among adults: Findings from an updated systematic review and meta-analysis. Int. J. Clin. Pract. 2020, 74, e13471. [Google Scholar] [CrossRef]
- Storz, M.A.; Rizzo, G.; Müller, A.; Lombardo, M. Bowel Health in U.S. Vegetarians: A 4-Year Data Report from the National Health and Nutrition Examination Survey (NHANES). Nutrients 2022, 14, 681. [Google Scholar] [CrossRef]
- Yurtdaş, G.; Acar-Tek, N.; Akbulut, G.; Cemali, Ö.; Arslan, N.; Beyaz Coşkun, A.; Zengin, F.H. Risk Factors for Constipation in Adults: A Cross-Sectional Study. J. Am. Coll. Nutr. 2020, 39, 713–719. [Google Scholar] [CrossRef]
- Walter, S.A.; Kjellström, L.; Nyhlin, H.; Talley, N.J.; Agréus, L. Assessment of normal bowel habits in the general adult population: The Popcol study. Scand. J. Gastroenterol. 2010, 45, 556–566. [Google Scholar] [CrossRef]
- Sanjoaquin, M.A.; Appleby, P.N.; Spencer, E.A.; Key, T.J. Nutrition and lifestyle in relation to bowel movement frequency: A cross-sectional study of 20 630 men and women in EPIC–Oxford. Public Health Nutr. 2004, 7, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Panigrahi, M.K.; Kar, S.K.; Singh, S.P.; Ghoshal, U.C. Defecation Frequency and Stool Form in a Coastal Eastern Indian Population. J. Neurogastroenterol. Motil. 2013, 19, 374–380. [Google Scholar] [CrossRef]
- Kwon, H.J.; Lim, J.H.; Kang, D.; Lim, S.; Park, S.J.; Kim, J.H. Is stool frequency associated with the richness and community composition of gut microbiota? Intest. Res. 2019, 17, 419–426. [Google Scholar] [CrossRef]
- Hribar, M.; Hristov, H.; Gregorič, M.; Blaznik, U.; Zaletel, K.; Oblak, A.; Osredkar, J.; Kušar, A.; Žmitek, K.; Rogelj, I.; et al. Nutrihealth Study: Seasonal Variation in Vitamin D Status Among the Slovenian Adult and Elderly Population. Nutrients 2020, 12, 1838. [Google Scholar] [CrossRef] [PubMed]
- Jakše, B.; Jakše, B. Potential benefits of consuming omega-3 fatty acids for artistic gymnasts. Sci. Gymnast. J. 2017, 9, 127–152. [Google Scholar]
- Lane, K.E.; Wilson, M.; Hellon, T.G.; Davies, I.G. Bioavailability and conversion of plant based sources of omega-3 fatty acids—A scoping review to update supplementation options for vegetarians and vegans. Crit. Rev. Food Sci. Nutr. 2022, 62, 4982–4997. [Google Scholar] [CrossRef] [PubMed]
- Saunders, A.V.; Davis, B.C.; Garg, M.L. Omega-3 polyunsaturated fatty acids and vegetarian diets. Med. J. Aust. 2013, 199, S22–S26. [Google Scholar] [CrossRef]
- Von Schacky, C. Omega-3 index in 2018/19. Proc. Nutr. Soc. 2020, 79, 381–387. [Google Scholar] [CrossRef]
- Sarter, B.; Kelsey, K.S.; Schwartz, T.A.; Harris, W.S. Blood docosahexaenoic acid and eicosapentaenoic acid in vegans: Associations with age and gender and effects of an algal-derived omega-3 fatty acid supplement. Clin. Nutr. 2015, 34, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Štimec, M.; Kobe, H.; Smole, K.; Kotnik, P.; Širca-Čampa, A.; Zupančič, M.; Battelino, T.; Kržišnik, C.; Fidler Mis, N. Adequate iodine intake of Slovenian adolescents is primarily attributed to excessive salt intake. Nutr. Res. 2009, 29, 888–896. [Google Scholar] [CrossRef]
- Howie, B.J.; Shultz, T.D. Dietary and hormonal interrelationships among vegetarian Seventh-Day Adventists and nonvegetarian men. Am. J. Clin. Nutr. 1985, 42, 127–134. [Google Scholar] [CrossRef]
- Kuchakulla, M.; Nackeeran, S.; Blachman-Braun, R.; Ramasamy, R. The association between plant-based content in diet and testosterone levels in US adults. World J. Urol. 2021, 39, 1307–1311. [Google Scholar] [CrossRef]
- Jakše, B.; Jakše, B.; Pajek, J.; Pajek, M. Effects of ad libitum consumed, low-fat, high-fiber plant-based diet supplemented with plant-based meal replacements on cardiovascular risk factors. Food Nutr. Res. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, J.; Montesanto, A.; Giovannucci, E.; Zand, H.; Barati, M.; Kopchick, J.J.; Mirisola, M.G.; Lagani, V.; Bawadi, H.; Vardavas, R.; et al. Association between IGF-1 levels ranges and all-cause mortality: A meta-analysis. Aging Cell 2022, 21, e13540. [Google Scholar] [CrossRef] [PubMed]
- Dewell, A.; Weidner, G.; Sumner, M.D.; Barnard, R.J.; Marlin, R.O.; Daubenmier, J.J.; Chi, C.; Carroll, P.R.; Ornish, D. Relationship of Dietary Protein and Soy Isoflavones to Serum IGF-1 and IGF Binding Proteins in the Prostate Cancer Lifestyle Trial. Nutr. Cancer 2007, 58, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Ornish, D.; Weidner, G.; Fair, W.R.; Marlin, R.; Pettengill, E.B.; Raisin, C.J.; Dunn-Emke, S.; Crutchfield, L.; Jacobs, F.N.; Barnard, R.J.; et al. Intensive lifestyle changes may affect the progression of prostate cancer. J. Urol. 2005, 174, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.; Magee, P. Does soy protein affect circulating levels of unbound IGF-1? Eur. J. Nutr. 2018, 57, 423–432. [Google Scholar] [CrossRef]
- Menni, C.; Louca, P.; Berry, S.E.; Vijay, A.; Astbury, S.; Leeming, E.R.; Gibson, R.; Asnicar, F.; Piccinno, G.; Wolf, J.; et al. High intake of vegetables is linked to lower white blood cell profile and the effect is mediated by the gut microbiome. BMC Med. 2021, 19, 37. [Google Scholar] [CrossRef]
- Huang, Z.S.; Lo, S.C.; Tsay, W.; Hsu, K.L.; Chiang, F.T. Revision in reference ranges of peripheral total leukocyte count and differential leukocyte percentages based on a normal serum C-reactive protein level. J. Formos. Med. Assoc. 2007, 106, 608–616. [Google Scholar] [CrossRef] [Green Version]
- Sakuragi, S.; Moriguchi, J.; Ohashi, F.; Ikeda, M. Reference value and annual trend of white blood cell counts among adult Japanese population. Environ. Health Prev. Med. 2013, 18, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Gremeaux, V.; Gayda, M.; Lepers, R.; Sosner, P.; Juneau, M.; Nigam, A. Exercise and longevity. Maturitas 2012, 73, 312–317. [Google Scholar] [CrossRef]
- Ding, D.; Buskirk, J.V.; Nguyen, B.; Stamatakis, E.; Elbarbary, M.; Veronese, N.; Clare, P.J.; Lee, I.-M.; Ekelund, U.; Fontana, L. Physical activity, diet quality and all-cause cardiovascular disease and cancer mortality: A prospective study of 346 627 UK Biobank participants. Br. J. Sports Med. 2022, 56, 105195. [Google Scholar] [CrossRef]
- Suminski, R.R.; Leonard, T.; Obrusnikova, I.; Kelly, K. The Impact of Health Coaching on Weight and Physical Activity in Obese Adults: A Randomized Control Trial. Am. J. Lifestyle Med. 2022. [Google Scholar] [CrossRef]
- Jakše, B.; Jakše, B.; Pinter, S.; Jug, B.; Godnov, U.; Pajek, J.; Mis, N.F. Fidler Mis Dietary Intakes and Cardiovascular Health of Healthy Adults in Short-, Medium-, and Long-Term Whole-Food Plant-Based Lifestyle Program. Nutrients 2019, 12, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakše, B.; Jakše, B.; Godnov, U.; Pinter, S. Ongoing Community-Based Whole-Food, Plant-Based Lifestyle Effectively Preserves Muscle Mass during Body Mass Loss. Obesities 2022, 2, 157–170. [Google Scholar] [CrossRef]
- Kim, H.; Rebholz, C.M.; Hegde, S.; LaFiura, C.; Raghavan, M.; Lloyd, J.F.; Cheng, S.; Seidelmann, S.B. Plant-based diets, pescatarian diets and COVID-19 severity: A population-based case–control study in six countries. BMJ Nutr. Prev. Health 2021, 4, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Stancic, S.; Cullimore, J.; Barnard, N.D. Shoring Up Vaccine Efficacy. Am. J. Med. 2021, 135, 271–272. [Google Scholar] [CrossRef] [PubMed]
- Storz, M.A. Lifestyle Adjustments in Long-COVID Management: Potential Benefits of Plant-Based Diets. Curr. Nutr. Rep. 2021, 10, 352–363. [Google Scholar] [CrossRef]
Parameter | BH (cm) | BM (kg) | BMI (kg) | BF (%) | FM (kg) | LBM (kg) | FFM (kg) | BMC Total (kg) | BMD Total (g/cm2) |
---|---|---|---|---|---|---|---|---|---|
Result | 173 | 74.2 | 24.1 | 10.9 | 7.7 | 63.1 | 66.5 | 3.4 | 1.4 |
Parameter/7-DR * | Average | Recommendations |
---|---|---|
Macronutrients (/day) | ||
Energy intake (kcal) | 4420 ± 253 | |
Foods only | 4137 ± 213 | 3000 † |
SMR | 283 ± 60 | |
Carbohydrates (g) | 632 ± 55 | |
(% E) | 57 ± 4 | |
Foods only | 604 ± 52 | |
(% E from foods only) | 58 ± 4 | >50 † |
SMR | 28 ± 11 | |
Carbohydrates (g/kg BM) | 8.4 ± 0.9 | 6–10 g/kg BM †† |
Total sugars TS (g) | 157 ± 27 | |
(% E) | 14 ± 2 | |
Foods only | 137 ± 24 | |
SMR | 20 ± 10 | |
Free sugars FS (g) | 21 ± 6 | <5 ††† |
(% E) | 2 ± 1 | |
Foods only | 0.9 ± 1.4 | |
(% E from foods only) | 0 | |
SMR | 20 ± 6 | |
Fructose foods only | 57 ± 11 | |
Starches (g) | 162 ± 78 | |
(% E from foods only) | 16 ± 7 | |
Foods only | 162 ± 78 | |
SMR | 0 | |
Dietary fibre (g) | 143 ± 11 | >30 † |
(% E) | 6 ± 1 | |
Foods only | 126 ± 10 | |
Soluble (foods only) | 47 ± 10 | |
Insoluble (foods only) | 64 ± 8 | |
SMR | 17 ± 1 | |
Fat (g) | 106 ± 21 | >30 † (for high-level of PA) |
(% E) | 26 ± 4 | |
Foods only | 100 ± 21 | |
(% E from foods only) | 22 ± 4 | |
SMR | 5.9 ± 1.3 | |
SFAs (g) | 15 ± 2 | |
(% E) | 3 ± 0 | |
Foods only | 14 ± 3 | |
(% E from foods only) | 3 ± 1 | ≤10 ‡ |
SMR | 1.3 ± 0.6 | |
MUFAs (g) | 28 ± 13 | |
(% E) | 6 ± 13 | |
Foods only | 27 ± 13 | |
(% E from foods only) | 6 ± 3 | ≥10 ‡ |
SMR | 1.4 ± 0.5 | |
PUFAs (g) | 46 ± 5 | |
(% E) | 9 ± 1 | |
Foods only | 43 ± 5 | |
(% E from foods only) | 9 ± 1 | 7–10 ‡ |
SMR | 3.1 ± 1.0 | |
LA (g) foods only | 31 ± 5 | |
(% E from foods only) | 7 ± 1 | 2.5 † |
ALA (g) foods only | 15 ± 1 | 0.5 † |
(% E from foods only) | 3 ± 1 | |
ARA (g) foods only | 0 | |
EPAs + DHAs (mg) from SMR | 0 | 250 ‡‡ |
Cholesterol (mg) | 0 | |
(Plant) protein (g) | 164 ± 13 | |
(% E) | 15 ± 1 | |
Foods only | 142 ± 13 | |
(% E from foods only) | 14 ± 2 | |
SMR | 22 ± 4 | |
Foods only (g/kg BM) | 2.2 ± 0.1 | 1.2–2.0 g/kg BM †† |
Alcohol (g/d) | 0 | |
Water TW (L) | 4.7 ± 0.8 |
Parameter | Average | Recommendations |
---|---|---|
Micronutrients (/day) | ||
Vitamins | ||
Thiamine (mg) | 6.1 ± 0.6 | |
Foods only | 4.1 ± 0.3 | 1.3 † |
SMR | 2.0 ± 0.6 | |
Riboflavin (mg) | 5.7 ± 0.6 | |
Foods only | 2.7 ± 0.1 | 1.3 † |
SMR | 2.9 ± 0.7 | |
Niacin (mg) | 48 ± 13 | |
Foods only | 25 ± 8 | 16 † |
SMR | 23 ± 7 | |
Pantothenic acid (mg) | 19 ± 34 | |
Foods only | 11 ± 2 | 6 † |
SMR | 7.9 ± 2.4 | |
Vitamin B6 (mg) | 6.2 ± 1.1 | |
Foods only | 4.0 ± 0.7 | 1.6 † |
SMR | 2.3 ± 0.6 | |
Biotin (µg) | 219 ± 24 | |
Foods only | 119 ± 16 | 40 ‡ |
SMR | 100 ± 19 | |
Folate (µg) | 1706 ± 370 | |
Foods only | 1254 ± 414 | 300 † |
SMR FA | 452 ± 78 | |
Vitamin B12 (µg) | 431 ± 535 | |
Foods only | 0.1 ± 0.3 | 4 † |
SMR | 431 ± 535 | |
Retinol equ. RE (mg) | 4.4 ± 1.0 | |
Foods only | 3.3 ± 1.3 | 1 † |
SMR | 1.1 ± 0.1 | |
Vitamin C (mg) | 451 ± 106 | |
Foods only | 243 ± 90 | 110 † |
SMR | 208 ± 57 | |
Vitamin D (µg) | 116 ± 4 | |
Foods only | 0 | 20 † |
SMR | 116 ± 4 | |
Vitamin E (mg) | 43 ± 5 | |
Foods only | 17 ± 4 | 15 † |
SMR | 26 ± 3 | |
Vitamin K (µg) | 760 ± 200 | |
Foods only | 656 ± 204 | 80 † |
SMR | 104 ± 19 | |
Minerals | ||
Calcium (mg) | 1792 ± 186 | |
Foods only | 1371 ± 197 | 1000 † |
SMR | 421 ± 421 | |
Magnesium (mg) | 1967 ± 236 | |
Foods only | 1619 ± 237 | 400 † |
SMR | 348 ± 61 | |
Phosphorus (mg) | 3838 ± 293 | |
Foods only | 3156 ± 303 | 700 † |
SMR | 682 ± 116 | |
Potassium (mg) | 8922 ± 1125 | |
Foods only | 7951 ± 1102 | 4000 † |
SMR | 971 ± 197 | |
Sodium (mg) ‡ | 2276 ± 445 | |
Foods only | 2276 ± 445 | 1500 † |
SMR | 0 | |
Chloride (mg) ‡ | 3511 ± 603 | |
Foods only | 3511 ± 603 | 2300 † |
SMR | 0 | |
Trace elements | ||
Iron (mg) | 58 ± 6 | |
Foods only | 42 ± 5 | 10 † |
SMR | 16 ± 3 | |
Iodine (µg) ‡ | 365 ± 32 | |
Foods only | 180 ± 11 | 180–200 † |
SMR | 185 ± 29 | |
Zinc (mg) | 40 ± 4 | |
Foods only | 27 ± 3 | 16† |
SMR | 13 ± 4 | |
Selenium (µg) | 207 ± 53 | |
Foods only | 113 ± 46 | 70 † |
SMR | 94 ± 25 |
Parameter | BP (mmHg) | S-cholesterol (mmol/L) | LDL Cholesterol (mmol/L) | HDL Cholesterol (mmol/L) | S-triglycerides (mmol/L) | S-testosterone Total† (µg/L) | S-IGF-1†† (µg/L) | S-hs-CRP (mg/L) |
Result | 110/60 | 2.7 | 1.6 | 1.1 | 0.5 | 4.3 | 285 | 0.2 |
Reference values | <130/80 | <5.2 | <3.4 | >1.0 | <1.7 | 2.5–8.8 | 83–233 | <1 |
Parameter | S-leucocytes (109/L) | S-haemoglobin (g/L) | S-creatinine (µmol/L) | S-UA (µmol/L) | S-glucose (mmol/L) | S-HbA1c (%) | S-HbA1c (mmol/mol) | S-homocysteine (µmol/L) |
Result | 3.8 | 143 | 68 | 317 | 4.8 | 5.2 | 34 | 4.6 |
Reference values | 4.0–10.0 | 130–170 | 44–97 | 150–480 | 3.6–6.1 | <6.0 | <42 | 5–15 |
Parameter | S-ferritin (µg/L) | S-Fe (µmol/L) | S-vit B12 (pmol/L) | S-vit 25(OH)D (µg/L) | Omega-3 Index (%) | U-creatinine (g/L) | U-iodine (µg/L) | U-iodine/g Creatinine (µg/g) |
Results | 73 | 19 | 330 | 44 | 6.9 | 0.19 | 55 | 289 |
Reference values | 20–300 | 11–29 | 156–672 | 30–80 | 8–12 | 0.20–1.90 | 100–199 | 100–199 |
Lifestyle Status | L-IPAQ score | ||||||
Transportation (min/day) | Weekday Sitting (h/day) | Weekend Sitting (h/day) | Walking PA (MET min/w) | Moderate-int. PA (MET min/w) | Vigorous-int. PA (MET min/w) | Total PA (MET min/w) | |
70 | 8 | 4 | 2178 | 820 | 2400 | 5398 | |
PSQ score | PSQI score | Type of PA | |||||
Total PSQ index (score) | Stress status † (low/moderate/high) | Sleep duration (h) | Sleep efficiency (%) | Global sleep quality †† (score) | Resistance workout (n/w) | Walking ‡ or hiking ‡‡ (n/w) | |
0.32 | low | 7 | 85 | 3 | 3 (60 min) | 4 (90–120 min) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakše, B.; Pinter, S. Nutritional, Health and Lifestyle Status of a Highly Physically Active and Health-Conscious Long-Term Vegan Man: A Case Report from Slovenia. Reports 2022, 5, 45. https://doi.org/10.3390/reports5040045
Jakše B, Pinter S. Nutritional, Health and Lifestyle Status of a Highly Physically Active and Health-Conscious Long-Term Vegan Man: A Case Report from Slovenia. Reports. 2022; 5(4):45. https://doi.org/10.3390/reports5040045
Chicago/Turabian StyleJakše, Boštjan, and Stanislav Pinter. 2022. "Nutritional, Health and Lifestyle Status of a Highly Physically Active and Health-Conscious Long-Term Vegan Man: A Case Report from Slovenia" Reports 5, no. 4: 45. https://doi.org/10.3390/reports5040045
APA StyleJakše, B., & Pinter, S. (2022). Nutritional, Health and Lifestyle Status of a Highly Physically Active and Health-Conscious Long-Term Vegan Man: A Case Report from Slovenia. Reports, 5(4), 45. https://doi.org/10.3390/reports5040045