Clonal Evolution of B-Cell Acute Lymphoblastic Leukemia with del(9)(p13p21) into Mixed Phenotype Acute Leukemia Presenting as an Isolated Testicular Relapse
Abstract
:1. Introduction
2. Case Presentation Section
3. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Weinberg, O.K.; Arber, D.A. Mixed-phenotype acute leukemia: Historical overview and a new definition. Leukemia 2010, 24, 1844–1851. [Google Scholar] [CrossRef] [PubMed]
- Bene, M.C.; Porwit, A. Acute leukemias of ambiguous lineage. Sem. Diagn. Pathol. 2012, 29, 12–18. [Google Scholar] [CrossRef]
- Wolach, O.; Stone, R.M. Mixed-phenotype acute leukemia: Current challenges in diagnosis and therapy. Curr. Opin. Hematol. 2017, 24, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Steensma, D.P. Oddballs: Acute leukemias of mixed phenotype and ambiguous origin. Hematol. Oncol. Clin. N. Am. 2011, 25, 1235–1253. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Siddiqi, R.; Naqvi, K. An update on classification, genetics, and clinical approach to mixed phenotype acute leukemia (MPAL). Ann. Hematol. 2018, 97, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Dorantes-Acosta, E.; Pelayo, R. Lineage switching in acute leukemias: A consequence of stem cell plasticity? Bone Marrow Res. 2012, 2012, 406796. [Google Scholar] [CrossRef]
- Heerema, N.A.; Sather, H.N.; Sensel, M.G.; Liu-Mares, W.; Lange, B.J.; Bostrom, B.C.; Nachman, J.B.; Steinherz, P.G.; Hutchinson, R.; Gaynon, P.S.; et al. A ssociation of chromosome arm 9p abnormalities with adverse risk in childhood acute lymphoblastic leukemia: A report from the Children‘s Cancer Group. Blood 1999, 94, 1537–1544. [Google Scholar] [PubMed]
- Olopade, O.I.; Jenkins, R.B.; Ransom, D.T.; Malik, K.; Pomykala, H.; Nobori, T.; Cowan, J.M.; Rowley, J.D.; Diaz, M.O. Molecular analysis of deletions of the short arm of chromosome 9 in human gliomas. Cancer Res. 1992, 52, 2523–2529. [Google Scholar]
- Carrasco Salas, P.; Fernandez, L.; Vela, M.; Bueno, D.; Gonzalez, B.; Valentin, J.; Lapunzina, P.; Perez-Martinez, A. The role of CDKN2A/B deletions in pediatric acute lymphoblastic leukemia. Pediatr. Hematol. Oncol. 2016, 33, 415–422. [Google Scholar] [CrossRef]
- Zhang, W.; Kuang, P.; Liu, T. Prognostic significance of CDKN2A/B deletions in acute lymphoblastic leukaemia: A meta-analysis. Ann. Med. 2019, 51, 28–40. [Google Scholar] [CrossRef]
- Borowitz, M.J.; Bray, R.; Gascoyne, R.; Melnick, S.; Parker, J.W.; Picker, L.; Stetler-Stevenson, M. U.S.-Canadian Consensus recommendations on the immunophenotypic analysis of hematologic neoplasia by flow cytometry: Data analysis and interpretation. Cytometry 1997, 30, 236–244. [Google Scholar] [CrossRef]
- Wood, B.L.; Arroz, M.; Barnett, D.; DiGiuseppe, J.; Greig, B.; Kussick, S.J.; Oldaker, T.; Shenkin, M.; Stone, E.; Wallace, P. 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: Optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytometry B Clin. Cytom. 2007, 72 (Suppl. 1), S14–S22. [Google Scholar] [CrossRef]
- Jacobs, J.E.; Hastings, C. Isolated extramedullary relapse in childhood acute lymphocytic leukemia. Curr. Hematol. Malig. Rep. 2010, 5, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Grier, D.D.; Eskew, A.; White, T.; McLean, T.W. An unusual case of acute myeloid leukemia: Late isolated testicular relapse followed by isolated central nervous system relapse. Pediatr. Blood Cancer 2010, 55, 1231–1233. [Google Scholar] [CrossRef] [PubMed]
- Furman, W.L.; Fontanesi, J.; Hustu, O.; Dahl, G.V.; Kalwinsky, D.K.; Pui, C.H. Testicular relapse in children with acute nonlymphoblastic leukemia. Cancer 1990, 66, 2095–2098. [Google Scholar] [CrossRef]
- Carulli, G.; Marini, A.; Ferreri, M.I.; Azzara, A.; Ottaviano, V.; Lari, T.; Rocco, M.; Giuntini, S.; Petrini, M. B-cell acute lymphoblastic leukemia with t(4;11)(q21;q23) in a young woman: Evolution into mixed phenotype acute leukemia with additional chromosomal aberrations in the course of therapy. Hematol. Rep. 2012, 4, e15. [Google Scholar] [CrossRef]
- Jiang, J.G.; Roman, E.; Nandula, S.V.; Murty, V.V.; Bhagat, G.; Alobeid, B. Congenital MLL-positive B-cell acute lymphoblastic leukemia (B-ALL) switched lineage at relapse to acute myelocytic leukemia (AML) with persistent t(4;11) and t(1;6) translocations and JH gene rearrangement. Leuk. Lymphoma 2005, 46, 1223–1227. [Google Scholar] [CrossRef]
- Ridge, S.A.; Cabrera, M.E.; Ford, A.M.; Tapia, S.; Risueno, C.; Labra, S.; Barriga, F.; Greaves, M.F. Rapid intraclonal switch of lineage dominance in congenital leukaemia with a MLL gene rearrangement. Leukemia 1995, 9, 2023–2026. [Google Scholar]
- Sakaki, H.; Kanegane, H.; Nomura, K.; Goi, K.; Sugita, K.; Miura, M.; Ishii, E.; Miyawaki, T. Early lineage switch in an infant acute lymphoblastic leukemia. Int. J. Hematol. 2009, 90, 653–655. [Google Scholar] [CrossRef]
- Park, M.; Koh, K.N.; Kim, B.E.; Im, H.J.; Jang, S.; Park, C.J.; Chi, H.S.; Seo, J.J. Lineage switch at relapse of childhood acute leukemia: A report of four cases. J. Korean Med. Sci. 2011, 26, 829–831. [Google Scholar] [CrossRef]
- Stasik, C.; Ganguly, S.; Cunningham, M.T.; Hagemeister, S.; Persons, D.L. Infant acute lymphoblastic leukemia with t(11;16)(q23;p13.3) and lineage switch into acute monoblastic leukemia. Cancer Genet. Cytogenet. 2006, 168, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Ikarashi, Y.; Kakihara, T.; Imai, C.; Tanaka, A.; Watanabe, A.; Uchiyama, M. Double leukemias simultaneously showing lymphoblastic leukemia of the bone marrow and monocytic leukemia of the central nervous system. Am. J. Hematol. 2004, 75, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Park, C.J.; Jang, S.; Chi, H.S.; Seo, E.J.; Seo, J.J. A case of lineage switch from acute lymphoblastic leukemia to acute myeloid leukemia. Korean J. Lab. Med. 2007, 27, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Podgornik, H.; Debeljak, M.; Zontar, D.; Cernelc, P.; Prestor, V.V.; Jazbec, J. RUNX1 amplification in lineage conversion of childhood B-cell acute lymphoblastic leukemia to acute myelogenous leukemia. Cancer Genet. Cytogenet. 2007, 178, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Balducci, E.; Nivaggioni, V.; Boudjarane, J.; Bouriche, L.; Rahal, I.; Bernot, D.; Alazard, E.; Duployez, N.; Grardel, N.; Arnoux, I.; et al. Lineage switch from B acute lymphoblastic leukemia to acute monocytic leukemia with persistent t(4;11)(q21;q23) and cytogenetic evolution under CD19-targeted therapy. Ann. Hematol. 2017, 96, 1579–1581. [Google Scholar] [CrossRef] [PubMed]
- Imataki, O.; Ohnishi, H.; Yamaoka, G.; Arai, T.; Kitanaka, A.; Kubota, Y.; Kushida, Y.; Ishida, T.; Tanaka, T. Lineage switch from precursor B cell acute lymphoblastic leukemia to acute monocytic leukemia at relapse. Int. J. Clin. Oncol. 2010, 15, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Akagi, T.; Ogawa, S.; Dugas, M.; Kawamata, N.; Yamamoto, G.; Nannya, Y.; Sanada, M.; Miller, C.W.; Yung, A.; Schnittger, S.; et al. Frequent genomic abnormalities in acute myeloid leukemia/myelodysplastic syndrome with normal karyotype. Haematologica 2009, 94, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Kamath, A.; Tara, H.; Xiang, B.; Bajaj, R.; He, W.; Li, P. Double-minute MYC amplification and deletion of MTAP, CDKN2A, CDKN2B, and ELAVL2 in an acute myeloid leukemia characterized by oligonucleotide-array comparative genomic hybridization. Cancer Genet. Cytogenet. 2008, 183, 117–120. [Google Scholar] [CrossRef]
- Hrusak, O.; de Haas, V.; Stancikova, J.; Vakrmanova, B.; Janotova, I.; Mejstrikova, E.; Capek, V.; Trka, J.; Zaliova, M.; Luks, A.; et al. International cooperative study identifies treatment strategy in childhood ambiguous lineage leukemia. Blood 2018, 132, 264–276. [Google Scholar] [CrossRef] [Green Version]
- Maruffi, M.; Sposto, R.; Oberley, M.J.; Kysh, L.; Orgel, E. Therapy for children and adults with mixed phenotype acute leukemia: A systematic review and meta-analysis. Leukemia 2018, 32, 1515–1528. [Google Scholar] [CrossRef]
- Mejstrikova, E.; Volejnikova, J.; Fronkova, E.; Zdrahalova, K.; Kalina, T.; Sterba, J.; Jabali, Y.; Mihal, V.; Blazek, B.; Cerna, Z.; et al. Prognosis of children with mixed phenotype acute leukemia treated on the basis of consistent immunophenotypic criteria. Haematologica 2010, 95, 928–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, E.G.; Ali Ansari-Lari, M.; Batista, D.A.; Griffin, C.A.; Fuller, S.; Smith, B.D.; Borowitz, M.J. Acute bilineal leukemia: A rare disease with poor outcome. Leukemia 2007, 21, 2264–2270. [Google Scholar] [CrossRef] [PubMed]
- Forrest, S.J.; Geoerger, B.; Janeway, K.A. Precision medicine in pediatric oncology. Curr. Opin. Pediatr. 2018, 30, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Bose, P.; Simmons, G.L.; Grant, S. Cyclin-dependent kinase inhibitor therapy for hematologic malignancies. Expert. Opin. Investig. Drugs 2013, 22, 723–738. [Google Scholar] [CrossRef] [PubMed]
Flow Cytometry Marker | B-ALL Bone Marrow at Diagnosis | Testicular Relapse (2 Years from Diagnosis) | Bone Marrow Relapse (4 Months from Testicular Relapse) | ||
---|---|---|---|---|---|
B-ALL Component | Myeloid Component | B-ALL Component (0.4% Cells) | Myeloid Component (38% Cells) | ||
CD2 | − | − | + | − | − |
CD4 | − | − | + | − | + |
CD10 | + | − | − | − | − |
CD11b | − | − | + | − | + |
CD13 | + | + | + | − | + |
CD14 | − | − | + | − | − |
CD15 | − | − | + | − | − |
CD19 | + | + | − | + | − |
CD20 | + | − | − | − | − |
CD22 | + | + | − | + | − |
CD33 | − | − | + | − | + |
CD34 | + | + | − | + | − |
CD36 | − | − | + | − | − |
CD38 | + | + | + | + | + |
CD56 | − | − | − | − | + |
CD58 | + | + | + | + | + |
CD64 | − | − | + | − | + |
MPO | − | − | + | − | + |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, L.H.; Park, S.I.; Saxe, D.; Lew, G.; Raikar, S.S. Clonal Evolution of B-Cell Acute Lymphoblastic Leukemia with del(9)(p13p21) into Mixed Phenotype Acute Leukemia Presenting as an Isolated Testicular Relapse. Reports 2019, 2, 18. https://doi.org/10.3390/reports2030018
Miller LH, Park SI, Saxe D, Lew G, Raikar SS. Clonal Evolution of B-Cell Acute Lymphoblastic Leukemia with del(9)(p13p21) into Mixed Phenotype Acute Leukemia Presenting as an Isolated Testicular Relapse. Reports. 2019; 2(3):18. https://doi.org/10.3390/reports2030018
Chicago/Turabian StyleMiller, Lane H., Sunita I. Park, Debra Saxe, Glen Lew, and Sunil S. Raikar. 2019. "Clonal Evolution of B-Cell Acute Lymphoblastic Leukemia with del(9)(p13p21) into Mixed Phenotype Acute Leukemia Presenting as an Isolated Testicular Relapse" Reports 2, no. 3: 18. https://doi.org/10.3390/reports2030018
APA StyleMiller, L. H., Park, S. I., Saxe, D., Lew, G., & Raikar, S. S. (2019). Clonal Evolution of B-Cell Acute Lymphoblastic Leukemia with del(9)(p13p21) into Mixed Phenotype Acute Leukemia Presenting as an Isolated Testicular Relapse. Reports, 2(3), 18. https://doi.org/10.3390/reports2030018