Coherent Grating Transition Radiation of a Hollow Relativistic Electron Beam from a Flat 2D Photonic Crystal
Abstract
1. Introduction
2. Materials and Methods
2.1. Theory of GTR from a Single Electron
2.2. Theory of GTR from a Hollow Electron Beam
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
GTR | Grating transition radiation |
HEB | Hollow electron beam |
PC | Photonic crystal |
TR | Transition radiation |
References
- Cao, G.J.; Lindstrøm, C.A.; Adli, E.; Corde, S.; Gessner, S. Positron acceleration in plasma wakefields. Phys. Rev. Accel. Beams 2024, 27, 034801. [Google Scholar] [CrossRef]
- Jain, N. Evolution of ultra-relativistic hollow electron beams during their propagation in plasmas. Phys. Plasmas 2019, 26, 023107. [Google Scholar] [CrossRef]
- Redaelli, S.; Appleby, R.B.; Bruce, R.; Bruning, O.; Kolehmainen, A.; Ferlin, G.; Foussat, A.; Giovannozzi, M.; Hermes, P.; Mirarchi, D.; et al. Hollow electron lenses for beam collimation at the High-Luminosity Large Hadron Collider (HL-LHC). J. Instrum. 2024, 16, P03042. [Google Scholar] [CrossRef]
- Gu, X.; Fischer, W.; Altinbas, Z.; Drees, A.; Hock, J.; Hulsart, R.; Liu, C.; Marusic, A.; Miller, T.A.; Minty, M.; et al. Halo removal experiments with hollow electron lens in the BNL Relativistic Heavy Ion Collider. Phys. Rev. Accel. Beams 2020, 23, 031001. [Google Scholar] [CrossRef]
- Hu, L.-X.; Yu, T.-P.; Sheng, Z.-M.; Vieira, J.; Zou, D.-B.; Yin, Y.; McKenna, P.; Shao, F.-Q. Attosecond electron bunches from a nanofiber driven by Laguerre-Gaussian laser pulses. Sci. Rep. 2018, 8, 7282. [Google Scholar] [CrossRef] [PubMed]
- Shapovalov, P.G.; Oleinik, A.N.; Karataev, P.V. Computer simulations of the phase-space characteristics of electrons in a pyroelectric accelerator. J. Instrum. 2024, 19, C09001. [Google Scholar] [CrossRef]
- Rezaei, Z.; Farokhi, B. Start current and growth rate in Smith-Purcell free-electron laser with dielectric-loaded cylindrical grating. J. Theor. Appl. Phys. 2020, 14, 149–158. [Google Scholar] [CrossRef]
- Bluem, H.P.; Jackson, R.H.; Jarvis, J.D.; Todd, A.M.M.; Gardelle, J.; Modin, P.; Donohue, J.T. First Lasing From a High-Power Cylindrical Grating Smith–Purcell Device. IEEE Trans. Plasma Sci. 2015, 43, 3176–3184. [Google Scholar] [CrossRef]
- Ginzburg, V.L.; Frank, I.M. Radiation of a Uniformly Moving Electron Due to Its Transition from One Medium to Another. Zh. Eksp. Theor. Phys. 1945, 16, 15–28. [Google Scholar]
- Potylitsyn, A.; Sukhikh, L.; Gusvitskii, T.; Kube, G.; Novokshonov, A. Image of the transverse bunch profile via coherent optical transition radiation. Phys. Rev. Accel. Beams 2020, 23, 042804. [Google Scholar] [CrossRef]
- Mindur, B.; On behalf of the ATLAS Collaboration. ATLAS Transition Radiation Tracker (TRT): Straw tubes for tracking and particle identification at the Large Hadron Collider. Nucl. Instrum. Methods Phys. Res. Sect. B 2017, 845, 257–261. [Google Scholar] [CrossRef]
- Sergeeva, D.Y.; Tishchenko, A.A. Form Factor in Transition Radiation from Hollow Beams. JETP Lett. 2023, 117, 492–497. [Google Scholar] [CrossRef]
- Naumenko, G.; Aryshev, A.; Potylitsyn, A.; Shevelev, M.; Sukhikh, L.; Terunuma, N.; Urakawa, J. Monochromatic coherent grating transition radiation in sub-THz frequency range. Nucl. Instrum. Methods Phys. Res. Sect. B 2017, 402, 153–156. [Google Scholar] [CrossRef]
- Sergeeva, D.Y.; Aryshev, A.S.; Tishchenko, A.A.; Popov, K.E.; Terunuma, N.; Urakawa, J. THz Smith–Purcell and grating transition radiation from metasurface: Experiment and theory. Opt. Lett. 2021, 46, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Sergeeva, D.Y.; Garaev, D.I.; Tishchenko, A.A. Polarized grating transition radiation from a 2D photonic crystal. J. Opt. Soc. Am. B 2022, 39, 3275–3282. [Google Scholar] [CrossRef]
- Tishchenko, A.A.; Sergeeva, D.Y. Near-field resonances in photon emission via interaction of electrons with coupled nanoparticles. Phys. Rev. B 2019, 100, 235421. [Google Scholar] [CrossRef]
- Tishchenko, A.A.; Sergeeva, D.Y. Enhanced Smith-Purcell radiation based on quasibound states in the continuum in dimers aligned in a chain. Phys. Rev. B 2023, 108, 155435. [Google Scholar]
- Garibian, G.M.; Yang, C. X-Ray Transition Radiation; SSR Press: Yerevan, Armenia, 1983. [Google Scholar]
- Sergeeva, D.Y.; Tishchenko, A.A.; Strikhanov, M.N. UV and X-ray diffraction and transition radiation from charged particles Bunches. Nucl. Instrum. Methods Phys. Res. Sect. B 2013, 309, 189–193. [Google Scholar] [CrossRef]
- Humbert, P. Sur les fonctions hypercylindriques. Comptes Rendus L’académie Sci. 1920, 171, 490–492. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergeeva, D.Y.; Tishchenko, A.A. Coherent Grating Transition Radiation of a Hollow Relativistic Electron Beam from a Flat 2D Photonic Crystal. Particles 2025, 8, 62. https://doi.org/10.3390/particles8020062
Sergeeva DY, Tishchenko AA. Coherent Grating Transition Radiation of a Hollow Relativistic Electron Beam from a Flat 2D Photonic Crystal. Particles. 2025; 8(2):62. https://doi.org/10.3390/particles8020062
Chicago/Turabian StyleSergeeva, Daria Yu., and Alexey A. Tishchenko. 2025. "Coherent Grating Transition Radiation of a Hollow Relativistic Electron Beam from a Flat 2D Photonic Crystal" Particles 8, no. 2: 62. https://doi.org/10.3390/particles8020062
APA StyleSergeeva, D. Y., & Tishchenko, A. A. (2025). Coherent Grating Transition Radiation of a Hollow Relativistic Electron Beam from a Flat 2D Photonic Crystal. Particles, 8(2), 62. https://doi.org/10.3390/particles8020062