Mass Spectrum of Noncharmed and Charmed Meson States in Extended Linear-Sigma Model
Abstract
1. Introduction
2. Mesonic Lagrangian of Extended Linear-Sigma Model
3. Results
Mass Spectra of Noncharmed and Charmed Meson States
- Pseudoscalar mesonswhere , , , the various wavefunction renormalization factors, are listed in Appendix D.
- Scalar mesonswhere is another wavefunction renormalization factor. Although is the anomaly term we use in the present derivatives, the other possible anomaly terms and are also conjectured to affect the scalar masses, especially the earlier term.
- Vector mesons
- Axialvector mesons
- Pseudoscalar charmed mesonswhere , and are wavefunction renormalization factors.
- Scalar charmed mesonswhere , , and are additional wavefunction renormalization factors.
- Vector charmed mesons
- Axialvector charmed mesons
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Gell–Mann Matrices in SU(4)
Appendix B. 4×4 Φ Fields
Appendix C. Explicit Chiral Symmetry Breaking
Appendix D. Wavefunction Renormalization Factors
Mesonic Potential of SU(4) Linear-Sigma Model
Appendix E. Parameters of the SU(4) Linear-Sigma Model
References
- Gell-Mann, M.; Levy, M. The axial vector current in beta decay. Nuovo Cim. 1960, 16, 705. [Google Scholar] [CrossRef]
- Lenaghan, J.T.; Rischke, D.H. The O(N) model at finite temperature: Renormalization of the gap equations in Hartree and large N approximation. J. Phys. G Nucl. Part. Phys. 2000, 26, 431–450. [Google Scholar] [CrossRef][Green Version]
- Petropoulos, N. Linear sigma model and chiral symmetry at finite temperature. J. Phys. G Nucl. Part. Phys. 1999, 25, 2225–2241. [Google Scholar] [CrossRef]
- Hu, B. Chiral SU4⊗SU4 and scale invariance. Phys. Rev. D 1974, 9, 1825–1834. [Google Scholar] [CrossRef]
- Schechter, J.; Singer, M. SU(4) σ model. Phys. Rev. D 1975, 12, 2781–2790. [Google Scholar] [CrossRef]
- Geddes, H.B. Spin-zero mass spectrum in the one-loop approximation in a linear SU(4) sigma model. Phys. Rev. D 1980, 21, 278–289. [Google Scholar] [CrossRef]
- Andrianov, A.; Andrianov, V.; Espriu, D. Chiral Perturbation Theory vs. Linear Sigma Model in a Chiral Imbalance Medium. Particles 2020, 3, 15–22. [Google Scholar] [CrossRef]
- Tawfik, A. QCD phase diagram: A Comparison of lattice and hadron resonance gas model calculations. Phys. Rev. D—Part. Fields Gravit. Cosmol. 2005, 71, 054502. [Google Scholar] [CrossRef]
- Eshraim, W.I.; Giacosa, F.; Rischke, D.H. Phenomenology of charmed mesons in the extended Linear Sigma Model. Eur. Phys. J. A 2015, 51, 112. [Google Scholar] [CrossRef]
- Diab, A.M.; Ahmadov, A.I.; Tawfik, A.N.; Dahab, E.A.E. SU(4) Polyakov linear-sigma model at finite temperature and density. arXiv 2016, arXiv:1611.02693. [Google Scholar]
- Tawfik, A.; Magdy, N.; Diab, A. Polyakov linear SU(3) σ model: Features of higher-order moments in a dense and thermal hadronic medium. Phys. Rev. C 2014, 89, 055210. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Diab, A.M.; Hussein, M.T. SU(3) Polyakov linear-sigma model: Conductivity and viscous properties of QCD matter in thermal medium. Int. J. Mod. Phys. A 2016, 31, 1650175. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Diab, A.M.; Ezzelarab, N.; Shalaby, A.G. QCD thermodynamics and magnetization in nonzero magnetic field. Adv. High Energy Phys. 2016, 2016, 1381479. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Diab, A.M.; Hussein, M.T. Quark–hadron phase structure, thermodynamics, and magnetization of QCD matter. J. Phys. G Nucl. Part. Phys. 2018, 45, 055008. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Diab, A.M.; Hussein, M.T. Chiral phase structure of the sixteen meson states in the SU(3) Polyakov linear-sigma model for finite temperature and chemical potential in a strong magnetic field. Chin. Phys. C 2019, 43, 034103. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Diab, A.M. Chiral magnetic properties of QCD phase-diagram. Eur. Phys. J. A 2021, 57, 200. [Google Scholar] [CrossRef]
- Tawfik, A.N. QCD Phase Structure and In-Medium Modifications of Meson Masses in Polyakov Linear-Sigma Model with Finite Isospin Asymmetry. Universe 2023, 9, 276. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Magdy, N. SU(3) Polyakov linear-σ model in magnetic fields: Thermodynamics, higher-order moments, chiral phase structure, and meson masses. Phys. Rev. C 2015, 91, 015206. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Diab, A.M. Polyakov SU(3) extended linear- σ model: Sixteen mesonic states in chiral phase structure. Phys. Rev. C 2015, 91, 015204. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Diab, A.M.; Ghoneim, M.T.; Anwer, H. SU(3) Polyakov Linear-Sigma Model With Finite Isospin Asymmetry: QCD Phase Diagram. Int. J. Mod. Phys. A 2019, 34, 1950199. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Greiner, C.; Diab, A.M.; Ghoneim, M.T.; Anwer, H. Polyakov linear-σ model in mean-field approximation and optimized perturbation theory. Phys. Rev. C 2020, 101, 035210. [Google Scholar] [CrossRef]
- Giacosa, F.; Parganlija, D.; Kovacs, P.; Wolf, G. Phenomenology of light mesons within a chiral approach. EPJ Web Conf. 2012, 37, 08006. [Google Scholar] [CrossRef]
- Tawfik, A.N. Isospin Symmetry Breaking in Non-Perturbative QCD. Phys. Sci. Forum 2023, 7, 22. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Magdy, N. On SU(3) effective models and chiral phase-transition. Adv. High Energy Phys. 2015, 2015, 563428. [Google Scholar] [CrossRef]
- Eshraim, W.I.; Fischer, C.S.; Giacosa, F.; Parganlija, D. Hybrid phenomenology in a chiral approach. Eur. Phys. J. Plus 2020, 135, 945. [Google Scholar] [CrossRef]
- Klempt, E.; Zaitsev, A. Glueballs, Hybrids, Multiquarks. Experimental facts versus QCD inspired concepts. Phys. Rep. 2007, 454, 1–202. [Google Scholar] [CrossRef]
- Amsler, C.; Törnqvist, N.A. Mesons beyond the naive quark model. Phys. Rep. 2004, 389, 61–117. [Google Scholar] [CrossRef]
- Polyakov, A. Thermal properties of gauge fields and quark liberation. Phys. Lett. B 1978, 72, 477–480. [Google Scholar] [CrossRef]
- Susskind, L. Lattice models of quark confinement at high temperature. Phys. Rev. D 1979, 20, 2610–2618. [Google Scholar] [CrossRef]
- Svetitsky, B.; Yaffe, L.G. Critical behavior at finite-temperature confinement transitions. Nucl. Phys. B 1982, 210, 423–447. [Google Scholar] [CrossRef]
- Vafa, C.; Witten, E. Restrictions on symmetry breaking in vector-like gauge theories. Nucl. Phys. B 1984, 234, 173–188. [Google Scholar] [CrossRef]
- Particle Data Group; Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach, B.C.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar] [CrossRef]
- Barbieri, R.; Kögerler, R.; Kunszt, Z.; Gatto, R. Meson masses and widths in a gauge theory with linear binding potential. Nucl. Phys. B 1976, 105, 125–138. [Google Scholar] [CrossRef]
- Parganlija, D.; Giacosa, F.; Kovacs, P.; Wolf, G. Masses of Axial-Vector Resonances in a Linear Sigma Model with Nf = 3. AIP Conf. Proc. 2011, 1343, 328–330. [Google Scholar] [CrossRef]
- Fariborz, A.H.; Park, N.W.; Schechter, J.; Shahid, M.N. Gauged linear sigma model and pion-pion scattering. Phys. Rev. D 2009, 80, 113001. [Google Scholar] [CrossRef]
- Parganlija, D.; Giacosa, F.; Rischke, D.H. Vacuum Properties of Mesons in a Linear Sigma Model with Vector Mesons and Global Chiral Invariance. Phys. Rev. D 2010, 82, 054024. [Google Scholar] [CrossRef]
- Napsuciale, M. Scalar meson masses and mixing angle in a U(3) × U(3) linear sigma model. arXiv 1998, arXiv:hep-ph/9803396. [Google Scholar]
- Gasser, J.; Leutwyler, H. Chiral perturbation theory to one loop. Ann. Phys. 1984, 158, 142–210. [Google Scholar] [CrossRef]
- Bando, M.; Kugo, T.; Yamawaki, K. Nonlinear Realization and Hidden Local Symmetries. Phys. Rept. 1988, 164, 217–314. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Salomone, A.; Schechter, J. A Pseudoscalar Glueball, the Axial Anomaly and the Mixing Problem for Pseudoscalar Mesons. Phys. Rev. D 1981, 24, 2545–2548. [Google Scholar] [CrossRef]
- Parganlija, D.; Kovacs, P.; Wolf, G.; Giacosa, F.; Rischke, D.H. Meson vacuum phenomenology in a three-flavor linear sigma model with (axial-)vector mesons. Phys. Rev. D 2013, 87, 014011. [Google Scholar] [CrossRef]
- Mott, R. SU (4) × SU (4) symmetry breaking and its implications for SU (3) × SU (3) breaking. Nucl. Phys. B 1975, 84, 260–268. [Google Scholar] [CrossRef]
- Myers, J.C.; Ogilvie, M.C. New phases of SU(3) and SU(4) at finite temperature. Phys. Rev. D 2008, 77, 125030. [Google Scholar] [CrossRef]
- Tawfik, A.N. Equilibrium statistical-thermal models in high-energy physics. Int. J. Mod. Phys. A 2014, 29, 1430021. [Google Scholar] [CrossRef]
- Feng, X.C. On the mass spectrum of 21S0 meson state. Acta Phys. Pol. B 2008, 39, 2931–2938. [Google Scholar]
- Freund, P. Radially excited mesons. Nuovo Cimento A 1968, 58, 519–523. [Google Scholar] [CrossRef]
- Chen-Tsai, C.T.; Lee, T.Y. Radially excited states of mesons. Phys. Rev. D 1974, 10, 2960–2962. [Google Scholar] [CrossRef]
- Sbaih, M.; Srour, M.; Fayad, H. Lie Algebra and Representation of SU(4). Elecr. J. Theor. Phys. 2013, 10, 9–26. [Google Scholar]
- Arfken, G.; Weber, H.J. Mathematical Methods for Physicists; Elsevier Academic Press: Berkeley, CA, USA, 1985. [Google Scholar]
| Meson | Mass [MeV] | % Error | |||||
|---|---|---|---|---|---|---|---|
| This Work | PDG | ||||||
| Pseudoscalar | |||||||
| K | |||||||
| Scalar | |||||||
| 1200–1500 | |||||||
| Vector | |||||||
| Axialvector | |||||||
| 25 | |||||||
| 25 | |||||||
| 25 | |||||||
| 25 | |||||||
| Meson | Mass [MeV] | % Error | |||||
|---|---|---|---|---|---|---|---|
| This Work | PDG | ||||||
| Pseudoscalar | |||||||
| D | |||||||
| Scalar | |||||||
| Vector | |||||||
| Axialvector | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadov, A.I.; Alshehri, A.A.; Tawfik, A.N. Mass Spectrum of Noncharmed and Charmed Meson States in Extended Linear-Sigma Model. Particles 2024, 7, 560-575. https://doi.org/10.3390/particles7030031
Ahmadov AI, Alshehri AA, Tawfik AN. Mass Spectrum of Noncharmed and Charmed Meson States in Extended Linear-Sigma Model. Particles. 2024; 7(3):560-575. https://doi.org/10.3390/particles7030031
Chicago/Turabian StyleAhmadov, Azar I., Azzah A. Alshehri, and Abdel Nasser Tawfik. 2024. "Mass Spectrum of Noncharmed and Charmed Meson States in Extended Linear-Sigma Model" Particles 7, no. 3: 560-575. https://doi.org/10.3390/particles7030031
APA StyleAhmadov, A. I., Alshehri, A. A., & Tawfik, A. N. (2024). Mass Spectrum of Noncharmed and Charmed Meson States in Extended Linear-Sigma Model. Particles, 7(3), 560-575. https://doi.org/10.3390/particles7030031

