Light-Nuclei Production in Heavy-Ion Collisions at = 6.4 – 19.6 GeV in THESEUS Generator Based on Three-Fluid Dynamics
Abstract
:1. Introduction
2. The Updated Version of the Generator THESEUS
3. Results
3.1. Rapidity Distributions
3.2. Transverse-Momentum Spectra
3.3. Yield Ratios of Light-Nuclei
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adam, J.; Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Li, X. Net-proton number fluctuations and the Quantum Chromodynamics critical point. arXiv 2020, arXiv:2001.02852. [Google Scholar]
- Shuryak, E.; Torres-Rincon, J.M. Baryon preclustering at the freeze-out of heavy-ion collisions and light-nuclei production. Phys. Rev. C 2020, 101, 034914. [Google Scholar] [CrossRef] [Green Version]
- Shuryak, E.; Torres-Rincon, J.M. Light-nuclei production and search for the QCD critical point. Eur. Phys. J. A 2020, 56, 241. [Google Scholar] [CrossRef]
- Sun, K.J.; Li, F.; Ko, C.M. Effects of QCD critical point on light nuclei production. Phys. Lett. B 2021, 816, 136258. [Google Scholar] [CrossRef]
- Steinheimer, J.; Randrup, J. Spinodal amplification of density fluctuations in fluid-dynamical simulations of relativistic nuclear collisions. Phys. Rev. Lett. 2012, 109, 212301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinheimer, J.; Pang, L.; Zhou, K.; Koch, V.; Randrup, J.; Stoecker, H. A machine learning study to identify spinodal clumping in high energy nuclear collisions. J. High Energy Phys. 2019, 12, 122. [Google Scholar] [CrossRef] [Green Version]
- Skokov, V.V.; Voskresensky, D.N. Hydrodynamical description of a hadron-quark first-order phase transition. JETP Lett. 2009, 90, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Skokov, V.V.; Voskresensky, D.N. Hydrodynamical description of first-order phase transitions: Analytical treatment and numerical modeling. Nucl. Phys. A 2009, 828, 401–438. [Google Scholar] [CrossRef] [Green Version]
- Randrup, J. Phase transition dynamics for baryon-dense matter. Phys. Rev. C 2009, 79, 054911. [Google Scholar] [CrossRef]
- Russkikh, V.N.; Ivanov, Y.B.; Pokrovsky, Y.E.; Henning, P.A. Analysis of intermediate-energy heavy ion collisions within relativistic mean field two fluid model. Nucl. Phys. A 1994, 572, 749–790. [Google Scholar] [CrossRef]
- Ivanov, Y.B.; Russkikh, V.N.; Toneev, V.D. Relativistic heavy-ion collisions within 3-fluid hydrodynamics: Hadronic scenario. Phys. Rev. C 2006, 73, 044904. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, D.; He, S.; Sun, K.J.; Yu, N.; Luo, X. Light nuclei production in Au + Au collisions at = 5–200 GeV from JAM model. Phys. Lett. B 2020, 805, 135452. [Google Scholar] [CrossRef]
- Zhu, L.; Ko, C.M.; Yin, X. Light (anti-)nuclei production and flow in relativistic heavy-ion collisions. Phys. Rev. C 2015, 92, 064911. [Google Scholar] [CrossRef] [Green Version]
- Steinheimer, J.; Gudima, K.; Botvina, A.; Mishustin, I.; Bleicher, M.; Stocker, H. Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production versus Coalescence. Phys. Lett. B 2012, 714, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.J.; Chen, G.; Wang, Q.Y.; She, Z.L.; Yan, Y.L.; Liu, F.X.; Zhou, D.M.; Sa, B.H. Energy dependence of light (anti)nuclei and (anti)hypertriton production in the Au-Au collision from = 11.5 to 5020 GeV. Eur. Phys. J. A 2018, 54, 144. [Google Scholar] [CrossRef]
- Sombun, S.; Tomuang, K.; Limphirat, A.; Hillmann, P.; Herold, C.; Steinheimer, J.; Yan, Y.; Bleicher, M. Deuteron production from phase-space coalescence in the UrQMD approach. Phys. Rev. C 2019, 99, 014901. [Google Scholar] [CrossRef] [Green Version]
- Hillmann, P.; Käfer, K.; Steinheimer, J.; Vovchenko, V.; Bleicher, M. Coalescence, the thermal model and multi-fragmentation: The energy and volume dependence of light nuclei production in heavy ion collisions. arXiv 2022, arXiv:2109.05972. [Google Scholar] [CrossRef]
- Zhao, W.; Shen, C.; Ko, C.M.; Liu, Q.; Song, H. Beam-energy dependence of the production of light nuclei in Au + Au collisions. Phys. Rev. C 2020, 102, 044912. [Google Scholar] [CrossRef]
- Zhao, W.; Sun, K.J.; Ko, C.M.; Luo, X. Multiplicity Scaling of Light Nuclei Production in Relativistic Heavy-Ion Collisions. arXiv 2021, arXiv:2105.14204. [Google Scholar] [CrossRef]
- Oliinychenko, D. Overview of light nuclei production in relativistic heavy-ion collisions. arXiv 2020, arXiv:2003.05476. [Google Scholar] [CrossRef]
- Weil, J.; Steinberg, V.; Staudenmaier, J.; Pang, L.G.; Oliinychenko, D.; Mohs, J.; Kretz, M.; Kehrenberg, T.; Goldschmidt, A.; Bäuchle, B.; et al. Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions. Phys. Rev. C 2016, 94, 054905. [Google Scholar] [CrossRef] [Green Version]
- Oliinychenko, D.; Pang, L.G.; Elfner, H.; Koch, V. Microscopic study of deuteron production in PbPb collisions at = 2.76TeV via hydrodynamics and a hadronic afterburner. Phys. Rev. C 2019, 99, 044907. [Google Scholar] [CrossRef] [Green Version]
- Staudenmaier, J.; Oliinychenko, D.; Torres-Rincon, J.M.; Elfner, H. Deuteron production in relativistic heavy ion collisions via stochastic multiparticle reactions. Phys. Rev. C 2021, 104, 034908. [Google Scholar] [CrossRef]
- Aichelin, J.; Bratkovskaya, E.; Le Fèvre, A.; Kireyeu, V.; Kolesnikov, V.; Leifels, Y.; Voronyuk, V.; Coci, G. Parton-hadron-quantum-molecular dynamics: A novel microscopic n-body transport approach for heavy-ion collisions, dynamical cluster formation, and hypernuclei production. Phys. Rev. C 2020, 101, 044905. [Google Scholar] [CrossRef]
- Gläßel, S.; Kireyeu, V.; Voronyuk, V.; Aichelin, J.; Blume, C.; Bratkovskaya, E.; Coci, G.; Kolesnikov, V.; Winn, M. Cluster and hyper-cluster production in relativistic heavy-ion collisions within the Parton-Hadron-Quantum-Molecular-Dynamics approach. arXiv 2021, arXiv:2106.14839. [Google Scholar]
- Bratkovskaya, E.; Glässel, S.; Kireyeu, V.; Aichelin, J.; Bleicher, M.; Blume, C.; Coci, G.; Kolesnikov, V.; Steinheimer, J.; Voronyuk, V. Midrapidity cluster formation in heavy-ion collisions. arXiv 2022, arXiv:2208.11802. [Google Scholar] [CrossRef]
- Sun, K.J.; Wang, R.; Ko, C.M.; Ma, Y.G.; Shen, C. Relativistic kinetic approach to light nuclei production in high-energy nuclear collisions. arXiv 2021, arXiv:2106.12742. [Google Scholar]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J. Hadron production in central nucleus-nucleus collisions at chemical freeze-out. Nucl. Phys. A 2006, 772, 167–199. [Google Scholar] [CrossRef] [Green Version]
- Cleymans, J.; Oeschler, H.; Redlich, K.; Wheaton, S. Comparison of chemical freeze-out criteria in heavy-ion collisions. Phys. Rev. C 2006, 73, 034905. [Google Scholar] [CrossRef] [Green Version]
- Adam, J.; Suaide, A.A.P. Beam energy dependence of (anti-)deuteron production in Au + Au collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 2019, 99, 064905. [Google Scholar] [CrossRef] [Green Version]
- STAR Collaboration. Beam Energy Dependence of Triton Production and Yield Ratio (Nt × Np/Nd2) in Au+Au Collisions at RHIC. arXiv 2022, arXiv:2209.08058. [Google Scholar]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J.; Stocker, H. Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions. Phys. Lett. B 2011, 697, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Vovchenko, V.; Dönigus, B.; Kardan, B.; Lorenz, M.; Stoecker, H. Feeddown contributions from unstable nuclei in relativistic heavy-ion collisions. Phys. Lett. B 2020, 809, 135746. [Google Scholar] [CrossRef]
- Zhang, D. Light Nuclei (d,t) Production in Au + Au Collisions at = 7.7-200GeV. Nucl. Phys. A 2021, 1005, 121825. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Redlich, K.; Stachel, J. Decoding the phase structure of QCD via particle production at high energy. Nature 2018, 561, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Kozhevnikova, M.; Ivanov, Y.B.; Karpenko, I.; Blaschke, D.; Rogachevsky, O. Update of the Three-fluid Hydrodynamics-based Event Simulator: Light-nuclei production in heavy-ion collisions. Phys. Rev. C 2021, 103, 044905. [Google Scholar] [CrossRef]
- Ivanov, Y.B. Baryon Stopping as a Probe of Deconfinement Onset in Relativistic Heavy-Ion Collisions. Phys. Lett. B 2013, 721, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, Y.B. Alternative Scenarios of Relativistic Heavy-Ion Collisions: I. Baryon Stopping. Phys. Rev. C 2013, 87, 064904. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, Y.B. Alternative Scenarios of Relativistic Heavy-Ion Collisions: III. Transverse Momentum Spectra. Phys. Rev. C 2014, 89, 024903. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, Y.B.; Soldatov, A.A. Bulk Properties of the Matter Produced at Energies of the Beam Energy Scan Program. Phys. Rev. C 2018, 97, 024908. [Google Scholar] [CrossRef] [Green Version]
- Anticic, T.; Baatar, B.; Bartke, J.; Beck, H.; Betev, L.; Bialkowska, H.; Blume, C.; Boimska, B.; Book, J.; Botje, M.; et al. NA49 Collaboration. Production of deuterium, tritium, and He3 in central Pb + Pb collisions at 20A, 30A, 40A, 80A, and 158A GeV at the CERN Super Proton Synchrotron. Phys. Rev. C 2016, 94, 044906. [Google Scholar] [CrossRef] [Green Version]
- Batyuk, P.; Blaschke, D.; Bleicher, M.; Ivanov, Y.B.; Karpenko, I.; Merts, S.; Rogachevsky, O.; Nahrgang, M.; Petersen, H. Event simulation based on three-fluid hydrodynamics for collisions at energies available at the Dubna Nuclotron-based Ion Collider Facility and at the Facility for Antiproton and Ion Research in Darmstadt. Phys. Rev. C 2016, 94, 044917. [Google Scholar] [CrossRef] [Green Version]
- Batyuk, P.; Blaschke, D.; Bleicher, M.; Ivanov, Y.B.; Karpenko, I.; Malinina, L.; Merts, S.; Nahrgang, M.; Petersen, H.; Rogachevsky, O. Three-fluid Hydrodynamics-based Event Simulator Extended by UrQMD final State interactions (THESEUS) for FAIR-NICA-SPSBES/RHIC energies. EPJ Web Conf. 2018, 182, 02056. [Google Scholar] [CrossRef] [Green Version]
- Bass, S.A.; Mattiello, R.; Stöcker, H.; Greiner, W.; Hartnack, C. Is collective pion flow anticorrelated to nucleon flow? Phys. Lett. B 1993, 302, 381. [Google Scholar] [CrossRef]
- Bass, S.A.; Belkacem, M.; Bleicher, M.; Brandstetter, M.; Bravina, L.; Ernst, C.; Amelin, N.; Soff, S.; Spieles, C.; Weber, H.; et al. Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 1998, 41, 255. [Google Scholar] [CrossRef] [Green Version]
- Mishustin, I.N.; Russkikh, V.N.; Satarov, L.M. Fluid dynamical model of relativistic heavy ion collision. Sov. J. Nucl. Phys. 1991, 54, 260–314. (In Russian) [Google Scholar]
- Khvorostukin, A.S.; Skokov, V.V.; Toneev, V.D.; Redlich, K. Lattice QCD constraints on the nuclear equation of state. Eur. Phys. J. C 2006, 48, 531. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, Y.B. Alternative Scenarios of Relativistic Heavy-Ion Collisions: II. Particle Production. Phys. Rev. C 2013, 87, 064905. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, Y.B.; Soldatov, A.A. Light fragment production at CERN Super Proton Synchrotron. Eur. Phys. J. A 2017, 53, 218. [Google Scholar] [CrossRef] [Green Version]
- ADOPTED LEVELS for 4He. Available online: https://www.nndc.bnl.gov/nudat2/getdataset.jsp?nucleus=4HE&unc=nds (accessed on 31 January 2023).
- Song, H.; Bass, S.A.; Heinz, U. Viscous QCD matter in a hybrid hydrodynamic + Boltzmann approach. Phys. Rev. C 2011, 83, 024912. [Google Scholar] [CrossRef] [Green Version]
- Gazdzicki, M.; NA49 Collaboration. Report from NA49. J. Phys. G 2004, 30, S701–S708. [Google Scholar] [CrossRef] [Green Version]
- Anticic, T.; Baatar, B.; Barna, D.; Bartke, J.; Beck, H.; Betev, L.; NA49 Collaboration. Centrality dependence of proton and antiproton spectra in Pb + Pb collisions at 40A GeV and 158A GeV measured at the CERN SPS. Phys. Rev. C 2011, 83, 014901. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.J.; Chen, L.W.; Ko, C.M.; Xu, Z. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions. Phys. Lett. B 2017, 774, 103–107. [Google Scholar] [CrossRef]
- Sun, K.J.; Chen, L.W.; Ko, C.M.; Pu, J.; Xu, Z. Light nuclei production as a probe of the QCD phase diagram. Phys. Lett. B 2018, 781, 499–504. [Google Scholar] [CrossRef]
- Bastian, N.U.; Batyuk, P.; Blaschke, D.; Danielewicz, P.; Ivanov, Y.B.; Karpenko, I.; Röpke, G.; Rogachevsky, O.; Wolter, H.H. Light cluster production at NICA. Eur. Phys. J. A 2016, 52, 244. [Google Scholar] [CrossRef] [Green Version]
- Röpke, G.; Blaschke, D.; Ivanov, Y.B.; Karpenko, I.; Rogachevsky, O.V.; Wolter, H.H. Medium effects on freeze-out of light clusters at NICA energies. Phys. Part. Nucl. Lett. 2018, 15, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Dönigus, B.; Röpke, G.; Blaschke, D. Deuteron yields from heavy-ion collisions at energies available at the CERN Large Hadron Collider: Continuum correlations and in-medium effects. Phys. Rev. C 2022, 106, 044908. [Google Scholar] [CrossRef]
- Kozhevnikova, M.; Ivanov, Y.B. Light-nuclei production in heavy-ion collisions within thermodynamical approach. Phys. Rev. C 2023, 107, 024903. [Google Scholar] [CrossRef]
Nucleus(E[MeV]) | J | Decay Modes, in % |
---|---|---|
d | 1 | Stable |
t | Stable | |
He | Stable | |
He | 0 | Stable |
He(20.21) | 0 | p = 100 |
He(21.01) | 0 | n = 24, p = 76 |
He(21.84) | 2 | n = 37, p = 63 |
He(23.33) | 2 | n = 47, p = 53 |
He(23.64) | 1 | n = 45, p = 55 |
He(24.25) | 1 | n = 47, p = 50, d = 3 |
He(25.28) | 0 | n = 48, p = 52 |
He(25.95) | 1 | n = 48, p = 52 |
He(27.42) | 2 | n = 3, p = 3, d = 94 |
He(28.31) | 1 | n = 47, p = 48, d = 5 |
He(28.37) | 1 | n = 2, p = 2, d = 96 |
He(28.39) | 2 | n = 0.2, p = 0.2, d = 99.6 |
He(28.64) | 0 | d = 100 |
He(28.67) | 2 | d = 100 |
He(29.89) | 2 | n = 0.4, p = 0.4, d = 99.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozhevnikova, M.; Ivanov, Y.B.
Light-Nuclei Production in Heavy-Ion Collisions at
Kozhevnikova M, Ivanov YB.
Light-Nuclei Production in Heavy-Ion Collisions at
Kozhevnikova, Marina, and Yuri B. Ivanov.
2023. "Light-Nuclei Production in Heavy-Ion Collisions at
Kozhevnikova, M., & Ivanov, Y. B.
(2023). Light-Nuclei Production in Heavy-Ion Collisions at