# Masses of Compact (Neutron) Stars with Distinguished Cores

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. One-Component Static Cool Compact Stars: TOV Equations

#### 2.1. Scaling of TOV Equations and Compact/Neutron Star Masses and Radii

PSR | $\mathit{M}\phantom{\rule{3.33333pt}{0ex}}\left[{\mathit{M}}_{\odot}\right]$ | $\mathit{R}$ [km] |

1.4 | $11.{94}_{-0.87}^{+0.76}$${}^{\left(1\right)}$ [12], $12.45\pm 0.65$ [13], $12.{33}_{-0.81}^{+0.76}$ [15] | |

J0030+0451 | $1.{34}_{-0.16}^{+0.15}$ | $12.{71}_{-1.19}^{+1.14}$ [16] |

$1.{44}_{-0.14}^{+0.15}$ | $13.{02}_{-1.06}^{+1.24}$ [14], $12.{18}_{-0.79}^{+0.56}$ [17] | |

J1614–2230 | $1.908\pm 0.016$ [78] | |

J0348+0432 | $2.01\pm 0.04$ [79] | |

J0740+6620 | $2.{072}_{-0.066}^{+0.067}$ | $12.{39}_{-0.98}^{+1.30}$ [15] |

$2.08\pm 0.07$ [80] | $13.{7}_{-1.5}^{+2.6}$${}^{\left(2\right)}$ [13], $11.{96}_{-0.81}^{+0.86}$ [12] | |

0952-0607 ${}^{\left(3\right)}$ | $2.35\pm 0.17$ [81] |

^{(1)}90% confidence.

^{(2)}With nuclear physics constraints at low density and gravitational radiation data from GW170817 added in, the inferred radius drops to (12.35 ± 0.75) km [13].

^{(3)}Black-widow binary pulsar PSR 0952-0607.

#### 2.2. Solving TOV Equations

## 3. Small-Core Approximation and Beyond

#### 3.1. One-Component Core

#### 3.2. Multi-Component Cores

## 4. Core-Corona Decomposition with NY$\Delta $ DD-EM2 EoS

#### 4.1. Trace Anomaly

#### 4.2. Distinguished Cores with NY$\Delta $ Envelope

#### 4.3. Example of Radial Pressure and Mass Profiles

## 5. Summary

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A. Emergence of Hadron Masses

#### Appendix A.1. Three Pillars of EHM

#### Appendix A.1.1. Running Quark Mass

#### Appendix A.1.2. Running Gluon Mass

#### Appendix A.1.3. Process-Independent Effective Charge

#### Appendix A.2. Hadrons in Vacuum

#### Appendix A.3. Hadrons in Cold Dense Medium

#### Appendix A.4. Supplementary Remarks

**Figure A1.**Masses within the SM. Mysterious concentration of bare SM masses (quarks $[u,d,s,c,t,b]$, leptons $[e,\mu ,\tau ]$, gauge bosons $[{W}^{\pm},{Z}^{0}]$, Higgs $\left[H\right]$) and separation of neutrinos (${\nu}^{\prime}s=\left[{\nu}_{e,\mu ,\tau}\right])$ on a large energy scale ranging from present-day cosmic background radiation ${\omega}_{2.7\phantom{\rule{3.33333pt}{0ex}}K}^{CBR}\approx 0.233\times {10}^{-3}$ eV to Planck mass ${m}_{Pl}=\sqrt{\hslash c/{G}_{N}}\approx 1.22\times {10}^{19}$ GeV. Only the QED and QCD gauge Bosons $[\gamma ,g]$ remain massless.

## Appendix B. Holographic Approach to the EoS

**Figure A2.**Trace anomaly measure $\Delta $ (

**left**panel) and ratio $e/p$ (

**middle**panel) for the holographic model with tuned parameters to describe the lattice QCD data [133] (small crosses) at ${\mu}_{B}=0$. Errors are constructed either from combining the respective maximum and minimum values (vertical error bars) or by error propagation in quadrature (blueish error bars). The scaled susceptibility ${\chi}_{2}/{T}^{2}$ is displayed in the right panel; data (symbols) from [136].

**Figure A3.**Scaled pressure $p/{T}^{4}$ (

**left**panel), ratio $e/p$ (

**middle**panel), and scaled baryon density ${n}_{B}/{T}^{3}$ (

**right**panel) as a function of temperature for ${\mu}_{B}/T=1$ (blue) and 2 (red) in comparison with the data [133] (symbols with error bars).

**Figure A4.**Curves of constant pressure over the T-${\mu}_{B}$ plane. In such a way, the pressure data on the T axis are directly “transported” towards the ${\mu}_{B}$ axis, in particular $p(T=0,{\mu}_{B}^{\left(0\right)})={p}_{0}:=p({T}_{0},{\mu}_{B}=0)$ along the constant-pressure curve $T\left({\mu}_{B}\right){|}_{p={p}_{0}}$ starting at $T({\mu}_{B}=0)={T}_{0}$ and terminating at $T\left({\mu}_{B}^{\left(0\right)}\right)=0$. The energy density, with $s(T,{\mu}_{B})$ and ${n}_{B}(T,{\mu}_{B})$ given, then follows from $e=-p+Ts+{\mu}_{B}{n}_{B}$ (Gibbs–Duhem).

**Left**panel: A simple toy model is employed here for the purpose of demonstration ($s=4a{T}^{3}+2bT{\mu}_{B}^{2}$, ${n}_{B}=4c{\mu}_{B}^{3}+2b{T}^{2}{\mu}_{B}$, and numerical values $b/a=0.027384$, $c/a=0.000154$ referring to a two-flavor ideal quark-gluon plasma).

**Right**panel: For the holographic model (A1), (A3) and (A4) in a region (grey hatched) controlled by lattice QCD data [133] on the dark-grey beam sections.

## References

- Brandt, B.B.; Endrodi, G.; Fraga, E.S.; Hippert, M.; Schaffner-Bielich, J.; Schmalzbauer, S. New class of compact stars: Pion stars. Phys. Rev. D
**2018**, 98, 094510. [Google Scholar] [CrossRef] - Roberts, C.D.; Richards, D.G.; Horn, T.; Chang, L. Insights into the emergence of mass from studies of pion and kaon structure. Prog. Part. Nucl. Phys.
**2021**, 120, 103883. [Google Scholar] [CrossRef] - Roberts, C.D.; Schmidt, S.M. Reflections upon the emergence of hadronic mass. Eur. Phys. J. ST
**2020**, 229, 3319–3340. [Google Scholar] [CrossRef] - Tolos, L.; Fabbietti, L. Strangeness in Nuclei and Neutron Stars. Prog. Part. Nucl. Phys.
**2020**, 112, 103770. [Google Scholar] [CrossRef] - Silva, H.O.; Holgado, A.M.; Cárdenas-Avendaño, A.; Yunes, N. Astrophysical and theoretical physics implications from multimessenger neutron star observations. Phys. Rev. Lett.
**2021**, 126, 181101. [Google Scholar] [CrossRef] - Tews, I.; Pang, P.T.H.; Dietrich, T.; Coughlin, M.W.; Antier, S.; Bulla, M.; Heinzel, J.; Issa, L. On the Nature of GW190814 and Its Impact on the Understanding of Supranuclear Matter. Astrophys. J. Lett.
**2021**, 908, L1. [Google Scholar] [CrossRef] - Tang, S.P.; Jiang, J.L.; Gao, W.H.; Fan, Y.Z.; Wei, D.M. Constraint on phase transition with the multimessenger data of neutron stars. Phys. Rev. D
**2021**, 103, 063026. [Google Scholar] [CrossRef] - Margutti, R.; Chornock, R. First Multimessenger Observations of a Neutron Star Merger. Ann. Rev. Astron. Astrophys.
**2021**, 59, 155–202. [Google Scholar] [CrossRef] - Nicholl, M.; Margalit, B.; Schmidt, P.; Smith, G.P.; Ridley, E.J.; Nuttall, J. Tight multimessenger constraints on the neutron star equation of state from GW170817 and a forward model for kilonova light-curve synthesis. Mon. Not. R. Astron. Soc.
**2021**, 505, 3016–3032. [Google Scholar] [CrossRef] - Yu, J.; Song, H.; Ai, S.; Gao, H.; Wang, F.; Wang, Y.; Lu, Y.; Fang, W.; Zhao, W. Multimessenger Detection Rates and Distributions of Binary Neutron Star Mergers and Their Cosmological Implications. Astrophys. J.
**2021**, 916, 54. [Google Scholar] [CrossRef] - Annala, E.; Gorda, T.; Katerini, E.; Kurkela, A.; Nättilä, J.; Paschalidis, V.; Vuorinen, A. Multimessenger Constraints for Ultradense Matter. Phys. Rev. X
**2022**, 12, 011058. [Google Scholar] [CrossRef] - Pang, P.T.H.; Tews, I.; Coughlin, M.W.; Bulla, M.; Broeck, C.V.D.; Dietrich, T. Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER’s PSR J0740+6620 Measurement. Astrophys. J.
**2021**, 922, 14. [Google Scholar] [CrossRef] - Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Ho, W.C.G.; Lattimer, J.M.; Loewenstein, M.; et al. The Radius of PSR J0740+6620 from NICER and XMM-Newton Data. Astrophys. J. Lett.
**2021**, 918, L28. [Google Scholar] [CrossRef] - Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.; Lattimer, J.M.; et al. PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophys. J. Lett.
**2019**, 887, L24. [Google Scholar] [CrossRef] - Riley, T.E.; Watts, A.L.; Ray, P.S.; Bogdanov, S.; Guillot, S.; Morsink, S.M.; Bilous, A.V.; Arzoumanian, Z.; Choudhury, D.; Deneva, J.S.; et al. A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy. Astrophys. J. Lett.
**2021**, 918, L27. [Google Scholar] [CrossRef] - Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty, D.; et al. A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. Lett.
**2019**, 887, L21. [Google Scholar] [CrossRef] - Raaijmakers, G.; Greif, S.K.; Hebeler, K.; Hinderer, T.; Nissanke, S.; Schwenk, A.; Riley, T.E.; Watts, A.L.; Lattimer, J.M.; Ho, W.C.G. Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass–Radius Estimate of PSR J0740+6620 and Multimessenger Observations. Astrophys. J. Lett.
**2021**, 918, L29. [Google Scholar] [CrossRef] - Pereira, J.P.; Bejger, M.; Tonetto, L.; Lugones, G.; Haensel, P.; Zdunik, J.L.; Sieniawska, M. Probing elastic quark phases in hybrid stars with radius measurements. Astrophys. J.
**2021**, 910, 145. [Google Scholar] [CrossRef] - Christian, J.E.; Schaffner-Bielich, J. Twin Stars and the Stiffness of the Nuclear Equation of State: Ruling Out Strong Phase Transitions below 1.7n
_{0}with the New NICER Radius Measurements. Astrophys. J. Lett.**2020**, 894, L8. [Google Scholar] [CrossRef] - Chatziioannou, K. Neutron star tidal deformability and equation of state constraints. Gen. Rel. Grav.
**2020**, 52, 109. [Google Scholar] [CrossRef] - Motta, T.F.; Thomas, A.W. The role of baryon structure in neutron stars. Mod. Phys. Lett. A
**2022**, 37, 2230001. [Google Scholar] [CrossRef] - Jokela, N.; Järvinen, M.; Remes, J. Holographic QCD in the NICER era. Phys. Rev. D
**2022**, 105, 086005. [Google Scholar] [CrossRef] - Kovensky, N.; Poole, A.; Schmitt, A. Building a realistic neutron star from holography. Phys. Rev. D
**2022**, 105, 034022. [Google Scholar] [CrossRef] - Zhang, N.B.; Li, B.A. Impact of NICER’s Radius Measurement of PSR J0740+6620 on Nuclear Symmetry Energy at Suprasaturation Densities. Astrophys. J.
**2021**, 921, 111. [Google Scholar] [CrossRef] - Christian, J.E.; Schaffner-Bielich, J. Supermassive Neutron Stars Rule Out Twin Stars. Phys. Rev. D
**2021**, 103, 063042. [Google Scholar] [CrossRef] - Gerlach, U.H. Equation of State at Supranuclear Densities and the Existence of a Third Family of Superdense Stars. Phys. Rev.
**1968**, 172, 1325. [Google Scholar] [CrossRef] - Kämpfer, B. On the Possibility of Stable Quark and Pion Condensed Stars. J. Phys. A
**1981**, 14, L471. [Google Scholar] [CrossRef] - Kämpfer, B. On stabilizing effects of relativity in cold spheric stars with a phase transition in the interior. Phys. Lett. B
**1981**, 101, 366–368. [Google Scholar] [CrossRef] - Zdunik, J.L.; Haensel, P.; Schaeffer, R. Phase transitons in stellar cores, II Equilibrium configurations in general relativity. Astron. Astrophys.
**1987**, 172, 95–110. [Google Scholar] - Zdunik, J.L.; Haensel, P.; Schaeffer, R. Phase transitons in stellar cores, I Equilibrium configurations. Astron. Astrophys.
**1983**, 126, 121–145. [Google Scholar] - Li, J.J.; Sedrakian, A.; Alford, M. Relativistic hybrid stars with sequential first-order phase transitions and heavy-baryon envelopes. Phys. Rev. D
**2020**, 101, 063022. [Google Scholar] [CrossRef] - Alford, M.G.; Sedrakian, A. Compact stars with sequential QCD phase transitions. Phys. Rev. Lett.
**2017**, 119, 161104. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Malfatti, G.; Orsaria, M.G.; Ranea-Sandoval, I.F.; Contrera, G.A.; Weber, F. Delta baryons and diquark formation in the cores of neutron stars. Phys. Rev. D
**2020**, 102, 063008. [Google Scholar] [CrossRef] - Pereira, J.P.; Bejger, M.; Zdunik, J.L.; Haensel, P. Differentiating sharp phase transitions from mixed states in neutron stars. arXiv
**2022**, arXiv:2201.01217. [Google Scholar] - Bejger, M.; Blaschke, D.; Haensel, P.; Zdunik, J.L.; Fortin, M. Consequences of a strong phase transition in the dense matter equation of state for the rotational evolution of neutron stars. Astron. Astrophys.
**2017**, 600, A39. [Google Scholar] [CrossRef] - Li, J.J.; Sedrakian, A.; Alford, M. Relativistic hybrid stars in light of the NICER PSR J0740+6620 radius measurement. Phys. Rev. D
**2021**, 104, L121302. [Google Scholar] [CrossRef] - Cierniak, M.; Blaschke, D. The special point on the hybrid star mass–radius diagram and its multi–messenger implications. Eur. Phys. J. ST
**2020**, 229, 3663–3673. [Google Scholar] [CrossRef] - Ranea-Sandoval, I.F.; Han, S.; Orsaria, M.G.; Contrera, G.A.; Weber, F.; Alford, M.G. Constant-sound-speed parametrization for Nambu–Jona-Lasinio models of quark matter in hybrid stars. Phys. Rev. C
**2016**, 93, 045812. [Google Scholar] [CrossRef] - Alford, M.G.; Han, S. Characteristics of hybrid compact stars with a sharp hadron-quark interface. Eur. Phys. J. A
**2016**, 52, 62. [Google Scholar] [CrossRef] - Tan, H.; Dore, T.; Dexheimer, V.; Noronha-Hostler, J.; Yunes, N. Extreme matter meets extreme gravity: Ultraheavy neutron stars with phase transitions. Phys. Rev. D
**2022**, 105, 023018. [Google Scholar] [CrossRef] - Glendenning, N.K.; Kettner, C. Nonidentical neutron star twins. Astron. Astrophys.
**2000**, 353, L9. [Google Scholar] - Jakobus, P.; Motornenko, A.; Gomes, R.O.; Steinheimer, J.; Stoecker, H. The possibility of twin star solutions in a model based on lattice QCD thermodynamics. Eur. Phys. J. C
**2021**, 81, 41. [Google Scholar] [CrossRef] - Alford, M.; Braby, M.; Paris, M.W.; Reddy, S. Hybrid stars that masquerade as neutron stars. Astrophys. J.
**2005**, 629, 969. [Google Scholar] [CrossRef] - Klahn, T.; Blaschke, D.; Typel, S.; van Dalen, E.N.E.; Faessler, A.; Fuchs, C.; Gaitanos, T.; Grigorian, H.; Ho, A.; Kolomeitsev, E.E.; et al. Constraints on the high-density nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions. Phys. Rev. C
**2006**, 74, 035802. [Google Scholar] [CrossRef] [Green Version] - Most, E.R.; Motornenko, A.; Steinheimer, J.; Dexheimer, V.; Hanauske, M.; Rezzolla, L.; Stoecker, H. Probing neutron-star matter in the lab: Connecting binary mergers to heavy-ion collisions. arXiv
**2022**, arXiv:2201.13150. [Google Scholar] - Adamczewski-Musch, J.; Arnold, O.; Behnke, C.; Belounnas, A.; Belyaev, A.; Berger-Chen, J.C.; Biernat, J.; Blanco, A.; Blume, C.; Böhmer, M.; et al. Probing dense baryon-rich matter with virtual photons. Nature Phys.
**2019**, 15, 1040–1045. [Google Scholar] - Stephanov, M.A.; Rajagopal, K.; Shuryak, E.V. Event-by-event fluctuations in heavy ion collisions and the QCD critical point. Phys. Rev. D
**1999**, 60, 114028. [Google Scholar] [CrossRef] - Karsch, F. Lattice QCD at high temperature and density. Lect. Notes Phys.
**2002**, 583, 209–249. [Google Scholar] - Fukushima, K.; Hatsuda, T. The phase diagram of dense QCD. Rept. Prog. Phys.
**2011**, 74, 014001. [Google Scholar] [CrossRef] - Halasz, A.M.; Jackson, A.D.; Shrock, R.E.; Stephanov, M.A.; Verbaarschot, J.J.M. On the phase diagram of QCD. Phys. Rev. D
**1998**, 58, 096007. [Google Scholar] [CrossRef] - Blacker, S.; Bastian, N.U.F.; Bauswein, A.; Blaschke, D.B.; Fischer, T.; Oertel, M.; Soultanis, T.; Typel, S. Constraining the onset density of the hadron-quark phase transition with gravitational-wave observations. Phys. Rev. D
**2020**, 102, 123023. [Google Scholar] [CrossRef] - Blaschke, D.; Cierniak, M. Studying the onset of deconfinement with multi-messenger astronomy of neutron stars. Astron. Nachr.
**2021**, 342, 227–233. [Google Scholar] [CrossRef] - Orsaria, M.G.; Malfatti, G.; Mariani, M.; Ranea-Sandoval, I.F.; García, F.; Spinella, W.M.; Contrera, G.A.; Lugones, G.; Weber, F. Phase transitions in neutron stars and their links to gravitational waves. J. Phys. G
**2019**, 46, 073002. [Google Scholar] [CrossRef] - Cierniak, M.; Blaschke, D. Hybrid neutron stars in the mass-radius diagram. Astron. Nachr.
**2021**, 342, 819. [Google Scholar] [CrossRef] - Kämpfer, B. Phase transitions in dense nuclear matter and explosive neutron star phenomena. Phys. Lett. B
**1985**, 153, 121–123. [Google Scholar] [CrossRef] - Kämpfer, B. Phase transitions in nuclear matter and consequences for neutron stars. J. Phys. G
**1983**, 9, 1487. [Google Scholar] [CrossRef] - Schertler, K.; Greiner, C.; Schaffner-Bielich, J.; Thoma, M.H. Quark phases in neutron stars and a ’third family’ of compact stars as a signature for phase transitions. Nucl. Phys. A
**2000**, 677, 463–490. [Google Scholar] [CrossRef] [Green Version] - Christian, J.E.; Zacchi, A.; Schaffner-Bielich, J. Classifications of Twin Star Solutions for a Constant Speed of Sound Parameterized Equation of State. Eur. Phys. J. A
**2018**, 54, 28. [Google Scholar] [CrossRef] - Migdal, A.B.; Chernoutsan, A.I.; Mishustin, I.N. Pion condensation and dynamics of neutron stars. Phys. Lett. B
**1979**, 83, 158–160. [Google Scholar] [CrossRef] - Kämpfer, B. On the collapse of neutron stars and stellar cores to pion-condensed stars. Astrophys. Space Sci.
**1983**, 93, 185–197. [Google Scholar] [CrossRef] - Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rept.
**2005**, 405, 279–390. [Google Scholar] [CrossRef] - Luzio, L.D.; Gavela, B.; Quilez, P.; Ringwald, A. Dark matter from an even lighter QCD axion: Trapped misalignment. JCAP
**2021**, 10, 001. [Google Scholar] [CrossRef] - Hodges, H.M. Mirror baryons as the dark matter. Phys. Rev. D
**1993**, 47, 456. [Google Scholar] [CrossRef] [PubMed] - Tulin, S.; Yu, H.B. Dark Matter Self-interactions and Small Scale Structure. Phys. Rept.
**2018**, 730, 1–57. [Google Scholar] [CrossRef] - Karkevandi, D.R.; Shakeri, S.; Sagun, V.; Ivanytskyi, O. Bosonic dark matter in neutron stars and its effect on gravitational wave signal. Phys. Rev. D
**2022**, 105, 023001. [Google Scholar] [CrossRef] - Dengler, Y.; Schaffner-Bielich, J.; Tolos, L. Second Love number of dark compact planets and neutron stars with dark matter. Phys. Rev. D
**2022**, 105, 043013. [Google Scholar] [CrossRef] - Hippert, M.; Dillingham, E.; Tan, H.; Curtin, D.; Noronha-Hostler, J.; Yunes, N. Dark Matter or Regular Matter in Neutron Stars? How to tell the difference from the coalescence of compact objects. arXiv
**2022**, arXiv:2211.08590. [Google Scholar] - Beradze, R.; Gogberashvili, M.; Sakharov, A.S. Binary Neutron Star Mergers with Missing Electromagnetic Counterparts as Manifestations of Mirror World. Phys. Lett. B
**2020**, 804, 135402. [Google Scholar] [CrossRef] - Alizzi, A.; Silagadze, Z.K. Dark photon portal into mirror world. Mod. Phys. Lett. A
**2021**, 36, 2150215. [Google Scholar] [CrossRef] - Goldman, I.; Mohapatra, R.N.; Nussinov, S. Bounds on neutron-mirror neutron mixing from pulsar timing. Phys. Rev. D
**2019**, 100, 123021. [Google Scholar] [CrossRef] - Berezhiani, Z. Antistars or antimatter cores in mirror neutron stars? Universe
**2022**, 8, 313. [Google Scholar] [CrossRef] - Berezhiani, Z.; Biondi, R.; Mannarelli, M.; Tonelli, F. Neutron-mirror neutron mixing and neutron stars. Eur. Phys. J. C
**2021**, 81, 1036. [Google Scholar] [CrossRef] - Beacham, J.; Burrage, C.; Curtin, D.; Roeck, A.D.; Evans, J.; Feng, J.L.; Gatto, C.; Gninenko, S.; Hartin, A.; Irastorza, I.; et al. Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report. J. Phys. G
**2020**, 47, 010501. [Google Scholar] [CrossRef] - Zöllner, R.; Kämpfer, B. Exotic Cores with and without Dark-Matter Admixtures in Compact Stars. Astronomy
**2022**, 1, 36–48. [Google Scholar] [CrossRef] - Schaffner-Bielich, J. Compact Star Physics; Cambridge University Press: Cambridge UK, 2020. [Google Scholar]
- Schulze, R.; Kämpfer, B. Cold quark stars from hot lattice QCD. arXiv
**2009**, arXiv:0912.2827. [Google Scholar] - Baym, G.; Hatsuda, T.; Kojo, T.; Powell, P.D.; Song, Y.; Takatsuka, T. From hadrons to quarks in neutron stars: A review. Rept. Prog. Phys.
**2018**, 81, 056902. [Google Scholar] [CrossRef] - Demorest, P.; Pennucci, T.; Ransom, S.; Roberts, M.; Hessels, J. Shapiro Delay Measurement of A Two Solar Mass Neutron Star. Nature
**2010**, 467, 1081. [Google Scholar] [CrossRef] - Antoniadis, J.; Freire, P.C.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A Massive Pulsar in a Compact Relativistic Binary. Science
**2013**, 340, 6131. [Google Scholar] [CrossRef] - Fonseca, E.; Cromartie, H.T.; Pennucci, T.T.; Ray, P.S.; Kirichenko, A.Y.; Ransom, S.M.; Demorest, P.B.; Stairs, I.H.; Arzoumanian, Z.; Guillemot, L.; et al. Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620. Astrophys. J. Lett.
**2021**, 915, L12. [Google Scholar] [CrossRef] - Romani, R.W.; Kandel, D.; Filippenko, A.V.; Brink, T.G.; Zheng, W. PSR J0952-0607: The Fastest and Heaviest Known Galactic Neutron Star. Astrophys. J. Lett.
**2022**, 934, L18. [Google Scholar] [CrossRef] - Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. Lett.
**2020**, 896, L44. [Google Scholar] [CrossRef] - Ecker, C.; Rezzolla, L. Impact of large-mass constraints on the properties of neutron stars. arXiv
**2022**, arXiv:2209.08101. [Google Scholar] [CrossRef] - Shao, Y. On the Neutron Star/Black Hole Mass Gap and Black Hole Searches. Res. Astron. Astrophys.
**2022**, 22, 122002. [Google Scholar] [CrossRef] - Farah, A.M.; Fishbach, M.; Essick, R.; Holz, D.E.; Galaudage, S. Bridging the Gap: Categorizing Gravitational-wave Events at the Transition between Neutron Stars and Black Holes. Astrophys. J.
**2022**, 931, 108. [Google Scholar] [CrossRef] - Reed, B.T.; Fattoyev, F.J.; Horowitz, C.J.; Piekarewicz, J. Implications of PREX-2 on the Equation of State of Neutron-Rich Matter. Phys. Rev. Lett.
**2021**, 126, 172503. [Google Scholar] [CrossRef] [PubMed] - Annala, E.; Gorda, T.; Kurkela, A.; Nättilä, J.; Vuorinen, A. Evidence for quark-matter cores in massive neutron stars. Nature Phys.
**2020**, 16, 907–910. [Google Scholar] [CrossRef] - Altiparmak, S.; Ecker, C.; Rezzolla, L. On the Sound Speed in Neutron Stars. Astrophys. J. Lett.
**2022**, 939, L34. [Google Scholar] [CrossRef] - Ayriyan, A.; Blaschke, D.; Grunfeld, A.G.; Alvarez-Castillo, D.; Grigorian, H.; Abgaryan, V. Bayesian analysis of multimessenger M-R data with interpolated hybrid EoS. Eur. Phys. J. A
**2021**, 57, 318. [Google Scholar] [CrossRef] - Oter, E.L.; Windisch, A.; Llanes-Estrada, F.J.; Alford, M. nEoS: Neutron Star Equation of State from hadron physics alone. J. Phys. G
**2019**, 46, 084001. [Google Scholar] [CrossRef] [Green Version] - Lattimer, J.M.; Prakash, M. The Equation of State of Hot, Dense Matter and Neutron Stars. Phys. Rept.
**2016**, 621, 127–164. [Google Scholar] [CrossRef] - Greif, S.K.; Hebeler, K.; Lattimer, J.M.; Pethick, C.J.; Schwenk, A. Equation of state constraints from nuclear physics, neutron star masses, and future moment of inertia measurements. Astrophys. J.
**2020**, 901, 155. [Google Scholar] [CrossRef] - Anzuini, F.; Bell, N.F.; Busoni, G.; Motta, T.F.; Robles, S.; Thomas, A.W.; Virgato, M. Improved treatment of dark matter capture in neutron stars III: Nucleon and exotic targets. JCAP
**2021**, 11, 056. [Google Scholar] [CrossRef] - Bell, N.F.; Busoni, G.; Robles, S. Capture of Leptophilic Dark Matter in Neutron Stars. JCAP
**2019**, 06, 054. [Google Scholar] [CrossRef] - Das, H.C.; Kumar, A.; Kumar, B.; Patra, S.K. Dark Matter Effects on the Compact Star Properties. Galaxies
**2022**, 10, 14. [Google Scholar] [CrossRef] - Das, H.C.; Kumar, A.; Patra, S.K. Dark matter admixed neutron star as a possible compact component in the GW190814 merger event. Phys. Rev. D
**2021**, 104, 063028. [Google Scholar] [CrossRef] - Blaschke, D.; Ayriyan, A.; Alvarez-Castillo, D.E.; Grigorian, H. Was GW170817 a Canonical Neutron Star Merger? Bayesian Analysis with a Third Family of Compact Stars. Universe
**2020**, 6, 81. [Google Scholar] [CrossRef] - Newton, W.G.; Balliet, L.; Budimir, S.; Crocombe, G.; Douglas, B.; Head, T.B.; Langford, Z.; Rivera, L.; Sanford, J. Ensembles of unified crust and core equations of state in a nuclear-multimessenger astrophysics environment. Eur. Phys. J. A
**2022**, 58, 69. [Google Scholar] [CrossRef] - Huth, S.; Pang, P.T.H.; Tews, I.; Dietrich, T.; Fèvre, A.L.; Schwenk, A.; Trautmann, W.; Agarwal, K.; Bulla, M.; Coughlin, M.W.; et al. Constraining Neutron-Star Matter with Microscopic and Macroscopic Collisions. Nature
**2022**, 606, 276–280. [Google Scholar] [CrossRef] - Raaijmakers, G.; Riley, T.E.; Watts, A.L.; Greif, S.K.; Morsink, S.M.; Hebeler, K.; Schwenk, A.; Hinderer, T.; Nissanke, S.; Guillot, S.; et al. A NICER view of PSR J0030+0451: Implications for the dense matter equation of state. Astrophys. J. Lett.
**2019**, 887, L22. [Google Scholar] [CrossRef] [Green Version] - Raaijmakers, G.; Greif, S.K.; Riley, T.E.; Hinderer, T.; Hebeler, K.; Schwenk, A.; Watts, A.L.; Nissanke, S.; Guillot, S.; Lattimer, J.M.; et al. Constraining the dense matter equation of state with joint analysis of NICER and LIGO/Virgo measurements. Astrophys. J. Lett.
**2020**, 893, L21. [Google Scholar] [CrossRef] - Gorda, T.; Komoltsev, O.; Kurkela, A. Ab-initio QCD calculations impact the inference of the neutron-star-matter equation of state. arXiv
**2022**, arXiv:2204.11877. [Google Scholar] - Cassing, M.; Brisebois, A.; Azeem, M.; Schaffner-Bielich, J. Exotic Compact Objects with Two Dark Matter Fluids. arXiv
**2022**, arXiv:2210.13697. [Google Scholar] - Kain, B. Dark matter admixed neutron stars. Phys. Rev. D
**2021**, 103, 043009. [Google Scholar] [CrossRef] - Fujimoto, Y.; Fukushima, K.; McLerran, L.D.; Praszalowicz, M. Trace anomaly as signature of conformality in neutron stars. Phys. Rev. Lett.
**2022**, 129, 252702. [Google Scholar] [CrossRef] - Marczenko, M.; McLerran, L.; Redlich, K.; Sasaki, C. Reaching percolation and conformal limits in neutron stars. arXiv
**2022**, arXiv:2207.13059. [Google Scholar] [CrossRef] - Hippert, M.; Fraga, E.S.; Noronha, J. Insights on the peak in the speed of sound of ultradense matter. Phys. Rev. D
**2021**, 104, 034011. [Google Scholar] [CrossRef] - Marczenko, M.; Redlich, K.; Sasaki, C. Reconciling Multi-messenger Constraints with Chiral Symmetry Restoration. arXiv
**2022**, arXiv:2208.03933. [Google Scholar] [CrossRef] - Suleiman, L.; Fortin, M.; Zdunik, J.L.; Haensel, P. Influence of the crust on the neutron star macrophysical quantities and universal relations. Phys. Rev. C
**2021**, 104, 015801. [Google Scholar] [CrossRef] - Gao, H.; Ai, S.K.; Cao, Z.J.; Zhang, B.; Zhu, Z.Y.; Li, A.; Zhang, N.B.; Bauswein, A. Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars. Front. Phys. (Beijing)
**2020**, 15, 24603. [Google Scholar] [CrossRef] - Ding, M.; Roberts, C.D.; Schmidt, S.M. Emergence of Hadron Mass and Structure. Particles
**2023**, 6, 57–120. [Google Scholar] [CrossRef] - Dorkin, S.M.; Kaptari, L.P.; Hilger, T.; Kampfer, B. Analytical properties of the quark propagator from a truncated Dyson-Schwinger equation in complex Euclidean space. Phys. Rev. C
**2014**, 89, 034005. [Google Scholar] [CrossRef] [Green Version] - Dorkin, S.M.; Kaptari, L.P.; Kämpfer, B. Accounting for the analytical properties of the quark propagator from the Dyson-Schwinger equation. Phys. Rev. C
**2015**, 91, 055201. [Google Scholar] [CrossRef] - Greifenhagen, R.; Kämpfer, B.; Kaptari, L.P. Regge Trajectories of Radial Meson Excitations: Exploring the Dyson–Schwinger and Bethe–Salpeter Approach. In Discoveries at the Frontiers of Science; FIAS Interdisciplinary Science Series; Springer Nature: Berlin/Heidelberg, Germany, 2020; p. 55. [Google Scholar]
- Dorkin, S.M.; Hilger, T.; Kaptari, L.P.; Kampfer, B. Heavy pseudoscalar mesons in a Schwinger-Dyson–Bethe-Salpeter approach. Few Body Syst.
**2011**, 49, 247–254. [Google Scholar] [CrossRef] - Dorkin, S.M.; Hilger, T.; Kampfer, B.; Kaptari, L.P. A Combined Solution of the Schwinger-Dyson and Bethe-Salpeter Equations for Mesons as qq¯ Bound States. arXiv
**2010**, arXiv:1012.5372. [Google Scholar] - Kaptari, L.P.; Kämpfer, B. Mass Spectrum of Pseudo-Scalar Glueballs from a Bethe–Salpeter Approach with the Rainbow–Ladder Truncation. Few Body Syst.
**2020**, 61, 28. [Google Scholar] [CrossRef] - Maris, P.; Roberts, C.D.; Schmidt, S.M. Chemical potential dependence of pi and rho properties. Phys. Rev. C
**1998**, 57, R28215. [Google Scholar] [CrossRef] - Bender, A.; Poulis, G.I.; Roberts, C.D.; Schmidt, S.M.; Thomas, A.W. Deconfinement at finite chemical potential. Phys. Lett. B
**1998**, 431, 263–269. [Google Scholar] [CrossRef] - Roberts, C.D.; Schmidt, S.M. Dyson-Schwinger equations: Density, temperature and continuum strong QCD. Prog. Part. Nucl. Phys.
**2000**, 45, S1. [Google Scholar] [CrossRef] - Brodsky, S.J.; Roberts, C.D.; Shrock, R.; Tandy, P.C. Confinement contains condensates. Phys. Rev. C
**2012**, 85, 065202. [Google Scholar] [CrossRef] - Brambilla, N.; Eidelman, S.; Foka, P.; Gardner, S.; Kronfeld, A.S.; Alford, M.G.; Alkofer, R.; Butenschoen, M.; Cohen, T.D.; Erdmenger, J.; et al. QCD and Strongly Coupled Gauge Theories: Challenges and Perspectives. Eur. Phys. J. C
**2014**, 74, 2981. [Google Scholar] - Thomas, R.; Zschocke, S.; Kampfer, B. Evidence for in-medium changes of four-quark condensates. Phys. Rev. Lett.
**2005**, 95, 232301. [Google Scholar] [CrossRef] [PubMed] - Buchheim, T.; Hilger, T.; Kampfer, B. Wilson coefficients and four-quark condensates in QCD sum rules for medium modifications of D mesons. Phys. Rev. C
**2015**, 91, 015205. [Google Scholar] [CrossRef] - Brodsky, S.J.; Shrock, R. Condensates in Quantum Chromodynamics and the Cosmological Constant. Proc. Nat. Acad. Sci. USA
**2011**, 108, 45–50. [Google Scholar] [CrossRef] [Green Version] - Gubler, P.; Satow, D. Recent Progress in QCD Condensate Evaluations and Sum Rules. Prog. Part. Nucl. Phys.
**2019**, 106. [Google Scholar] [CrossRef] - Thomas, R.; Hilger, T.; Kampfer, B. Four-quark condensates in nucleon QCD sum rules. Nucl. Phys. A
**2007**, 795. [Google Scholar] [CrossRef] - Fischer, C.S.; Kubrak, S.; Williams, R. Mass spectra and Regge trajectories of light mesons in the Bethe-Salpeter approach. Eur. Phys. J. A
**2014**, 50, 126. [Google Scholar] [CrossRef] - DeWolfe, O.; Gubser, S.S.; Rosen, C. A holographic critical point. Phys. Rev. D
**2011**, 83, 086005. [Google Scholar] [CrossRef] - Grefa, J.; Noronha, J.; Noronha-Hostler, J.; Portillo, I.; Ratti, C.; Rougemont, R. Hot and dense quark-gluon plasma thermodynamics from holographic black holes. Phys. Rev. D
**2021**, 104, 034002. [Google Scholar] [CrossRef] - Critelli, R.; Noronha, J.; Noronha-Hostler, J.; Portillo, I.; Ratti, C.; Rougemont, R. Critical point in the phase diagram of primordial quark-gluon matter from black hole physics. Phys. Rev. D
**2017**, 96, 096026. [Google Scholar] [CrossRef] - Järvinen, M. Holographic modeling of nuclear matter and neutron stars. Eur. Phys. J. C
**2022**, 82, 282. [Google Scholar] [CrossRef] - Borsányi, S.; Fodor, Z.; Guenther, J.N.; Kara, R.; Katz, S.D.; Parotto, P.; Pásztor, A.; Ratti, C.; Szabó, K.K. Lattice QCD equation of state at finite chemical potential from an alternative expansion scheme. Phys. Rev. Lett.
**2021**, 126, 232001. [Google Scholar] [CrossRef] [PubMed] - Borsanyi, S.; Fodor, Z.; Hoelbling, C.; Katz, S.D.; Krieg, S.; Szabo, K.K. Full result for the QCD equation of state with 2+1 flavors. Phys. Lett. B
**2014**, 730. [Google Scholar] [CrossRef] - Bazavov, A.; Bhattacharya, T.; DeTar, C.; Ding, H.T.; Gottlieb, S.; Gupta, R.; Hegde, P.; Heller, U.M.; Karsch, F.; Laermann, E.; et al. Equation of state in ( 2+1 )-flavor QCD. Phys. Rev. D
**2014**, 90, 094503. [Google Scholar] [CrossRef] [Green Version] - Bellwied, R.; Borsanyi, S.; Fodor, Z.; Katz, S.D.; Pasztor, A.; Ratti, C.; Szabo, K.K. Fluctuations and correlations in high temperature QCD. Phys. Rev. D
**2015**, 92, 114505. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Scaled core masses ${\overline{m}}_{x}$ as a function of the scaled core radii ${\overline{r}}_{x}$ for various values of ${\Delta}^{corona}=\Delta $ and ${v}_{s}^{2}$ for a one-component medium with EoS (4). The

**left**(

**right**) panel is for $\lambda =1$ (1.5). The scaling quantity is $\mathfrak{s}={p}_{x}$. For central pressures ${\overline{p}}_{c}=1.{1}^{n}$, $n=1\cdots 55$. The displayed curves are limited by ${\overline{m}}_{x}<{\overline{r}}_{x}/2$ (black hole limit) and ${\overline{m}}_{x}>\frac{4\pi}{3}\lambda \frac{3}{1-3{\Delta}^{corona}}{\overline{r}}_{x}^{3}$. The latter expression is for the respective asymptotic curve in the small-${\overline{r}}_{x}$ region. To convert to usual dimensions, one employs ${r}_{x}={\overline{r}}_{x}\frac{86.9\phantom{\rule{3.33333pt}{0ex}}\mathrm{k}\mathrm{m}}{\sqrt{{p}_{x}/100\phantom{\rule{3.33333pt}{0ex}}{[\mathrm{MeV}/\mathrm{f}\mathrm{m}}^{3}]}}$ and ${m}_{x}={\overline{m}}_{x}\frac{58.8\phantom{\rule{3.33333pt}{0ex}}{M}_{\odot}}{\sqrt{{p}_{x}/100\phantom{\rule{3.33333pt}{0ex}}{[\mathrm{MeV}/\mathrm{f}\mathrm{m}}^{3}]}}$, where “${p}_{x}/100\phantom{\rule{3.33333pt}{0ex}}\left[{\mathrm{MeV}/\mathrm{f}\mathrm{m}}^{3}\right]$” denotes the scaling pressure ${p}_{x}$ in units of 100 MeV/fm${}^{3}$. The approximations (10) and (11) apply only in the small-${\overline{m}}_{x}$ and small-${\overline{r}}_{x}$ regions.

**Figure 2.**

**Left**panel: As the left panel of Figure 1, but for a two-component medium of SM + MW matter with ${p}_{\left(1\right)}\left(r\right)={p}_{\left(2\right)}\left(r\right)$ and EoS (4) for both components. Note the difference to the two-fluid core-shell construction in Ref. [103].

**Right**panel: As a left panel but for a three-component medium.

**Figure 3.**

**Left**panel: Trace anomaly measure $\Delta =1/3-p/e$ as a function of $\eta \equiv lne/\left({n}_{0}{m}_{p}\right)$ for the NY$\Delta $ DD-EM2 EoS of [31] (black curve with symbols) and the adjusted parameterization by Equation (7) in Ref. [105] (red curve; ${\eta}_{c}=1.1$, other parameters as in Ref. [105], see Equation (14) below). NY$\Delta $ DD-EM2 shows a softening at $p\approx 10$ MeV/fm${}^{3}$, $\eta \approx 0.5$, caused by the onset of $\Delta $ proliferation, similar to Ref. [108].

**Right**panel: Mass-radius relation for NY$\Delta $ DD-EM2 EoS of Ref. [31] (solid black curve) in comparison with the parameterization by Equation (7) in Ref. [105] (see Equation (14) below for three values of the parameter ${\eta}_{c}$ (read dashed/solid/dotted curves for ${\eta}_{c}=1.2$, 1.1 and 1.0).

**Figure 4.**Mass-radius plane and its occupancy by compact stars with given core radii ${r}_{x}$ (blue curves with dots at core masses ${m}_{x}={10}^{-4}$$1.{5}^{n}{M}_{\odot}$, $n=1,2,3\cdots $ from right to left; the open circles depict points for $n=15$, and the right-most endpoints are for $n=1$). The values of ${p}_{x}$ are 50 (

**left**panel), 100 (

**middle**panel), and 150 MeV/fm${}^{3}$ (

**right**panel). The fat solid curve is obtained by standard integration of the TOV equations using the NY$\Delta $ EoS tabulated in Ref. [31] with linear interpolation both in between the mesh and from the tabulated minimum energy density to the $p=0$ point at ${e}_{0}=1$ MeV/fm${}^{3}$. The asterisks display the mass-radius values for ${p}_{c}={p}_{x}$. That is, the sections above the asterisks (dotted curves) are for a particular continuation of NY$\Delta $ at $p>{p}_{x}$, which is, (trivially) in this case, NY$\Delta $ itself. One could instead employ the parameterization Equation (4) which would deliver another dotted curve. For other examples, in particular the small-R region near black hole and Buchdahl limits, the interested reader is referred to Ref. [74].

**Figure 5.**Pressure $p\left(r\right)$ (

**left**panel) and mass $m\left(r\right)$ (

**right**panel) as a function of the radius r for the special value ${p}_{x}=100$ MeV/fm${}^{3}$, selected here as the end point of the “reliable EoS” NY$\Delta $ at $p\le {p}_{x}$. Assuming a possible continuation at $p>{p}_{x}$ by NY$\Delta $ itself as a particular example, it yields the fat solid curves for the (ad hoc) choice ${p}_{c}=200$ MeV/fm${}^{3}$. Keeping the resulting value ${r}_{x}$ from $p\left({r}_{x}\right)={p}_{x}$ and integrating the TOV equations in the corona, $r\ge {r}_{x}$ with ${p}_{x}$ and ${m}_{x}^{(1,2)}$ as initial values, one gets the dashed blue (${m}_{x}^{\left(1\right)}=0.5{m}_{x}$) and dotted blue (${m}_{x}^{\left(2\right)}=2{m}_{x}$) curves, where the respective values of R and M can be read off. Using ${m}_{x}$ as core mass, the blue circles (on top of the fat black curve at $r\ge {r}_{x}$) are obtained. Using a multitude of values ${m}_{x}^{\left(n\right)}$ would generates one additional blue curve in Figure 4. In the present example, for ${r}_{x}=6$ km.

**Table 1.**Core compactness ${\overline{C}}_{x}=2{\overline{m}}_{x}^{max}/{\overline{r}}_{x}{|}_{{\overline{m}}_{x}^{max}}$ for various values of ${v}_{s}^{2}$ (sound velocity squared in the core) and ${\Delta}^{corona}=\Delta $. For $\lambda =1$.

$\mathsf{\Delta}$ | 0.1 | 0.2 | 0.3 | |
---|---|---|---|---|

${\mathit{v}}_{\mathit{s}}^{2}$ | ||||

1 | 0.64 | 0.67 | 0.70 | |

1/3 | 0.49 | 0.51 | 0.53 | |

1/6 | 0.37 | 0.38 | 0.40 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zöllner, R.; Ding, M.; Kämpfer, B.
Masses of Compact (Neutron) Stars with Distinguished Cores. *Particles* **2023**, *6*, 217-238.
https://doi.org/10.3390/particles6010012

**AMA Style**

Zöllner R, Ding M, Kämpfer B.
Masses of Compact (Neutron) Stars with Distinguished Cores. *Particles*. 2023; 6(1):217-238.
https://doi.org/10.3390/particles6010012

**Chicago/Turabian Style**

Zöllner, Rico, Minghui Ding, and Burkhard Kämpfer.
2023. "Masses of Compact (Neutron) Stars with Distinguished Cores" *Particles* 6, no. 1: 217-238.
https://doi.org/10.3390/particles6010012