Deep Learning Based Impact Parameter Determination for the CBM Experiment
Abstract
:1. Introduction
2. Data Preparation
3. PointNet Models
4. Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Friese, V. The CBM experiment at GSI/FAIR. Nucl. Phys. A 2006, 774, 377–386. [Google Scholar] [CrossRef]
- Senger, P.; Cbm Collaboration. The CBM experiment at FAIR. J. Phys. Conf. Ser. 2006, 50, 357–360. [Google Scholar] [CrossRef]
- Staszel, P.; Cbm Collaboration. CBM experiment at FAIR. Acta Phys. Polon. B 2010, 41, 341–350. [Google Scholar]
- Klochkov, V.; Selyuzhenkov, I. Centrality determination in heavy-ion collisions with the CBM experiment. J. Phys. Conf. Ser. 2017, 798, 012059. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.; Koch, V. Event by event fluctuations. arXiv 2003, arXiv:hep-ph/0304012. [Google Scholar] [CrossRef]
- Skokov, V.; Friman, B.; Redlich, K. Volume Fluctuations and Higher Order Cumulants of the Net Baryon Number. Phys. Rev. C 2013, 88, 034911. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Zhang, Y.; Liu, H.; Wang, R.; He, S.; Luo, X. Effects of centrality fluctuation and deuteron formation on proton number cumulant in Au+Au collisions at = 3 GeV from JAM model. arXiv 2020, arXiv:2009.03755. [Google Scholar]
- Pang, L.G.; Zhou, K.; Su, N.; Petersen, H.; Stöcker, H.; Wang, X.N. An equation-of-state-meter of quantum chromodynamics transition from deep learning. Nat. Commun. 2018, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Endrődi, G.; Pang, L.G.; Stöcker, H. Regressive and generative neural networks for scalar field theory. Phys. Rev. D 2019, 100, 011501. [Google Scholar] [CrossRef] [Green Version]
- Steinheimer, J.; Pang, L.; Zhou, K.; Koch, V.; Randrup, J.; Stoecker, H. A machine learning study to identify spinodal clumping in high energy nuclear collisions. J. High Energy Phys. 2019, 12, 122. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.L.; Zhou, K.; Steinheimer, J.; Pang, L.G.; Motornenko, A.; Zong, H.S.; Wang, X.N.; Stöcker, H. Identifying the nature of the QCD transition in relativistic collision of heavy nuclei with deep learning. Eur. Phys. J. C 2020, 80, 516. [Google Scholar] [CrossRef]
- Thaprasop, P.; Zhou, K.; Steinheimer, J.; Herold, C. Unsupervised Outlier Detection in Heavy-Ion Collisions. arXiv 2020, arXiv:2007.15830. [Google Scholar]
- Bourilkov, D. Machine and Deep Learning Applications in Particle Physics. Int. J. Mod. Phys. A 2020, 34, 1930019. [Google Scholar] [CrossRef] [Green Version]
- Radovic, A.; Williams, M.; Rousseau, D.; Kagan, M.; Bonacorsi, D.; Himmel, A.; Aurisano, A.; Terao, K.; Wongjirad, T. Machine learning at the energy and intensity frontiers of particle physics. Nature 2018, 560, 41–48. [Google Scholar] [CrossRef]
- Guest, D.; Cranmer, K.; Whiteson, D. Deep Learning and its Application to LHC Physics. Ann. Rev. Nucl. Part Sci. 2018, 68, 161–181. [Google Scholar] [CrossRef] [Green Version]
- Larkoski, A.J.; Moult, I.; Nachman, B. Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning. Phys. Rep. 2020, 841, 1–63. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, L.; Kagan, M.; Mackey, L.; Nachman, B.; Schwartzman, A. Jet-images—Deep learning edition. J. High Energy Phys. 2016, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Baldi, P.; Bauer, K.; Eng, C.; Sadowski, P.; Whiteson, D. Jet Substructure Classification in High-Energy Physics with Deep Neural Networks. Phys. Rev. D 2016, 93, 094034. [Google Scholar] [CrossRef] [Green Version]
- Komiske, P.T.; Metodiev, E.M.; Schwartz, M.D. Deep learning in color: Towards automated quark/gluon jet discrimination. J. High Energy Phys. 2017, 1, 110. [Google Scholar]
- Almeida, L.G.; Backović, M.; Cliche, M.; Lee, S.J.; Perelstein, M. Playing Tag with ANN: Boosted Top Identification with Pattern Recognition. J. High Energy Phys. 2015, 7, 86. [Google Scholar] [CrossRef] [Green Version]
- Kasieczka, G.; Plehn, T.; Russell, M.; Schell, T. Deep-learning Top Taggers or The End of QCD? J. High Energy Phys. 2017, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Kasieczka, G.; Plehn, T.; Butter, A.; Cranmer, K.; Debnath, D.; Dillon, B.M.; Fairbairn, M.; Faroughy, D.A.; Fedorko, W.; Gay, C.; et al. The Machine Learning Landscape of Top Taggers. SciPost Phys. 2019, 7, 14. [Google Scholar]
- Qu, H.; Gouskos, L. ParticleNet: Jet Tagging via Particle Clouds. Phys. Rev. D 2020, 101, 056019. [Google Scholar] [CrossRef] [Green Version]
- Moreno, E.A.; Cerri, O.; Duarte, J.M.; Newman, H.B.; Nguyen, T.Q.; Periwal, A.; Pierini, M.; Serikova, A.; Spiropulu, M.; Vlimant, J.R. JEDI-net: A jet identification algorithm based on interaction networks. Eur. Phys. J. C 2020, 80, 58. [Google Scholar] [CrossRef]
- Kasieczka, G.; Marzani, S.; Soyez, G.; Stagnitto, G. Towards Machine Learning Analytics for Jet Substructure. J. High Energy Phys. 2020, 9, 195. [Google Scholar] [CrossRef]
- CMS Collaboration. Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques. J. Instrum. 2020, 15, P06005. [Google Scholar] [CrossRef]
- Esmail, W.; Stockmanns, T.; Ritman, J. Machine Learning for Track Finding at PANDA. arXiv 2019, arXiv:1910.07191. [Google Scholar]
- Haake, R. Machine and deep learning techniques in heavy-ion collisions with ALICE. arXiv 2017, arXiv:1709.08497. [Google Scholar]
- Samuel, D.; Suresh, K. Artificial Neural Networks-based Track Fitting of Cosmic Muons through Stacked Resistive Plate Chambers. J. Instrum. 2018, 13, P10035. [Google Scholar] [CrossRef] [Green Version]
- Samuel, D.; Samalan, A.; Kuttan, M.O.; Murgod, L.P. Machine learning-based predictions of directionality and charge of cosmic muons—A simulation study using the mICAL detector. J. Instrum. 2019, 14, P11020. [Google Scholar] [CrossRef]
- Bass, S.A.; Bischoff, A.; Hartnack, C.; Maruhn, J.A.; Reinhardt, J.; Stoecker, H.; Greiner, W. Neural networks for impact parameter determination. J. Phys. G 1994, 20, L21–L26. [Google Scholar] [CrossRef] [Green Version]
- David, C.; Freslier, M.; Aichelin, J. Impact parameter determination for heavy-ion collisions by use of a neural network. Phys. Rev. C 1995, 51, 1453–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bass, S.A.; Bischoff, A.; Maruhn, J.A.; Stoecker, H.; Greiner, W. Neural networks for impact parameter determination. Phys. Rev. C 1996, 53, 2358–2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddad, F.; Hagel, K.; Li, J.; Mdeiwayeh, N.; Natowitz, J.B.; Wada, R.; Xiao, B.; David, C.; Freslier, M.; Aichelin, J. Impact parameter determination in experimental analysis using neural network. Phys. Rev. C 1997, 55, 1371–1375. [Google Scholar] [CrossRef] [Green Version]
- Sanctis, J.D.; Masotti, M.; Bruno, M.; D’Agostino, M.; Geraci, E.; Vannini, G.; Bonasera, A. Classification of the impact parameter in nucleus-nucleus collisions by a support vector machine method. J. Phys. G 2009, 36, 015101. [Google Scholar] [CrossRef]
- Li, F.; Wang, Y.; Lü, H.; Li, P.; Li, Q.; Liu, F. Application of artificial intelligence in the determination of impact parameter in heavy-ion collisions at intermediate energies. J. Phys. G 2020, 47, 115104. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Kuttan, M.O.; Steinheimer, J.; Zhou, K.; Redelbach, A.; Stoecker, H. A fast centrality-meter for heavy-ion collisions at the CBM experiment. Phys. Lett. B 2020, 811, 135872. [Google Scholar] [CrossRef]
- Heuser, J.M. The Silicon Tracking System of the CBM Experiment at FAIR. JPS Conf. Proc. 2015, 8, 022007. [Google Scholar]
- Deveaux, M.; Heuser, J.M. The Silicon Detector Systems of the Compressed Baryonic Matter Experiment; Universitätsbibliothek Johann Christian Senckenberg: Frankfurt am Main, Germany, 2013. [Google Scholar]
- Adamczewski-Musch, J.; Akishin, P.; Becker, K.H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; et al. The CBM RICH project. Nucl. Instrum. Meth. A 2017, 845, 434–438. [Google Scholar] [CrossRef]
- Bass, S.A.; Belkacem, M.; Bleicher, M.; Brandstetter, M.; Bravina, L.; Ernst, C.; Gerland, L.; Hofmann, M.; Hofmann, S.; Konopka, J.; et al. Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part Nucl. Phys. 1998, 41, 255–369. [Google Scholar] [CrossRef] [Green Version]
- Bleicher, M.; Zabrodin, E.; Spieles, C.; Bass, S.A.; Ernst, C.; Soff, S.; Bravina, L.; Belkacem, M.; Weber, H.; Stoecker, H.; et al. Relativistic hadron hadron collisions in the ultrarelativistic quantum molecular dynamics model. J. Phys. G 1999, 25, 1859–1896. [Google Scholar] [CrossRef]
- Available online: https://subversion.gsi.de/cbmsoft/cbmroot/release/OCT19/ (accessed on 1 December 2019).
- Brun, R.; McPherson, A.C.; Zanarini, P.; Maire, M.; Bruyant, F. GEANT 3: User’s Guide Geant 3.10, Geant 3.11. No. CERN-DD-EE-84-01; CERN: Meyrin, Switzerland, 1987. [Google Scholar]
- Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 77–85. [Google Scholar]
Model | Input Features | # Param. | Input Dimensions |
---|---|---|---|
M-hits | x, y, z of hits in all MVD planes | ||
S-hits | x, y, z of hits in all STS planes | ||
MS-tracks | x, y, z, dx/dz, dy/dz, q/P of tracks in first and last planes | ||
HT-combi | combination of features of M-hits and MS-tracks | , |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuttan, M.O.; Steinheimer, J.; Zhou, K.; Redelbach, A.; Stoecker, H. Deep Learning Based Impact Parameter Determination for the CBM Experiment. Particles 2021, 4, 47-52. https://doi.org/10.3390/particles4010006
Kuttan MO, Steinheimer J, Zhou K, Redelbach A, Stoecker H. Deep Learning Based Impact Parameter Determination for the CBM Experiment. Particles. 2021; 4(1):47-52. https://doi.org/10.3390/particles4010006
Chicago/Turabian StyleKuttan, Manjunath Omana, Jan Steinheimer, Kai Zhou, Andreas Redelbach, and Horst Stoecker. 2021. "Deep Learning Based Impact Parameter Determination for the CBM Experiment" Particles 4, no. 1: 47-52. https://doi.org/10.3390/particles4010006
APA StyleKuttan, M. O., Steinheimer, J., Zhou, K., Redelbach, A., & Stoecker, H. (2021). Deep Learning Based Impact Parameter Determination for the CBM Experiment. Particles, 4(1), 47-52. https://doi.org/10.3390/particles4010006