Critical Behavior of (2 + 1)-Dimensional QED: 1/N Expansion
Abstract
:1. Introduction
2. SD Equations
3. LO
4. NLO
4.1. Extraction of the Most “Important” Terms
4.2. Gap Equation
4.3. Resummation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kotikov, A.V.; Shilin, V.I.; Teber, S. Critical behavior of (2 + 1)-dimensional QED: 1/Nf corrections in the Landau gauge. Phys. Rev. D 2016, 94, 056009. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Teber, S. Critical behavior of (2 + 1)-dimensional QED: 1/Nf corrections in an arbitrary nonlocal gauge. Phys. Rev. D 2016, 94, 114011. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Teber, S. Critical behaviour of (2 + 1)-dimensional QED: 1/N-corrections. EPJ Web Conf. 2017, 138, 06005. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Teber, S. Critical Behaviour of (2 + 1)-Dimensional QED: 1/N-Corrections; Preprint DESY-PROC-2016-04; EDP Sciences: Les Ulis, France, 2016. [Google Scholar]
- Teber, S. Field theoretic study of electron-electron interaction effects in Dirac liquids. arXiv 2018, arXiv:1810.08428. [Google Scholar]
- Appelquist, T.; Nash, D.; Wijewardhana, L.C.R. Critical Behavior in (2 + 1)-Dimensional QED. Phys. Rev. Lett. 1988, 60, 2575. [Google Scholar] [CrossRef]
- Appelquist, T.; Pisarski, R. High-Temperature Yang-Mills Theories and Three-Dimensional Quantum Chromodynamics. Phys. Rev. D 1981, 23, 2305. [Google Scholar] [CrossRef]
- Jackiw, R.; Templeton, S. How Superrenormalizable Interactions Cure their Infrared Divergences. Phys. Rev. D 1981, 23, 2291. [Google Scholar] [CrossRef] [Green Version]
- Appelquist, T.; Heinz, U. Three-dimensional O(n) Theories At Large Distances. Phys. Rev. D 1981, 24, 2169. [Google Scholar] [CrossRef]
- Pisarski, R. Chiral Symmetry Breaking in Three-Dimensional Electrodynamics. Phys. Rev. D 1984, 29, 2423. [Google Scholar] [CrossRef]
- Pennington, M.R.; Walsh, D. Masses from nothing: A Nonperturbative study of QED in three-dimensions. Phys. Lett. B 1991, 253, 246. [Google Scholar] [CrossRef]
- Curtis, D.C.; Pennington, M.R.; Walsh, D. Dynamical mass generation in QED in three-dimensions and the 1/N expansion. Phys. Lett. B 1992, 295, 313. [Google Scholar] [CrossRef]
- Pisarski, R. Fermion mass in three-dimensions and the renormalization group. Phys. Rev. D 1991, 44, 1866. [Google Scholar] [CrossRef]
- Azcoiti, V.; Luo, X.Q. (2 + 1)-dimensional compact QED with dynamical Fermions. Nucl. Phys. Proc. Suppl. 1993, 30, 741. [Google Scholar] [CrossRef]
- Azcoiti, V.; Laliena, V.; Luo, X.Q. Investigation of spontaneous symmetry breaking from a nonstandard approach. Nucl. Phys. Proc. Suppl. 1996, 47, 565. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, D.; Johnson, P.W.; Maris, P. Dynamical Mass Generation in QED in Three-dimensions: Improved Vertex Function. Phys. Rev. D 1990, 42, 602. [Google Scholar] [CrossRef]
- Karthik, N.; Narayanan, R. No evidence for bilinear condensate in parity-invariant three-dimensional QED with massless fermions. Phys. Rev. D 2016, 93, 045020. [Google Scholar] [CrossRef] [Green Version]
- Karthik, N.; Narayanan, R. Scale-invariance of parity-invariant three-dimensional QED. Phys. Rev. D 2016, 94, 065026. [Google Scholar] [CrossRef] [Green Version]
- Appelquist, T.; Cohen, A.; Schmaltz, V. A New constraint on strongly coupled gauge theories. Phys. Rev. D 1999, 60, 045003. [Google Scholar] [CrossRef] [Green Version]
- Giombi, S.; Klebanov, I.R.; Tarnopolsky, G. Conformal QEDd, F-Theorem and the ϵ-Expansion. J. Phys. A 2016, 49, 135403. [Google Scholar] [CrossRef]
- Di Pietro, L.; Komargodski, Z.; Shamir, I.; Stamou, T. Quantum Electrodynamics in d=3 from the ϵ Expansion. Phys. Rev. Lett. 2016, 116, 131601. [Google Scholar] [CrossRef] [Green Version]
- Dagotto, E.; Kocic, A.; Kogut, J.B. A Computer Simulation of Chiral Symmetry Breaking in (2 + 1)-Dimensional QED with N Flavors. Phys. Rev. Lett. 1989, 62, 1083. [Google Scholar] [CrossRef]
- Dagotto, E.; Kocic, A.; Kogut, J.B. Chiral Symmetry Breaking in Three-dimensional QED With N(f) Flavors. Nucl. Phys. B 1990, 334, 279. [Google Scholar] [CrossRef]
- Hands, S.J.; Kogut, J.B.; Scorzato, L.; Strouthos, C.G. Non-compact QED(3) with N(f) = 1 and N(f)= 4. Phys. Rev. B 2004, 70, 104501. [Google Scholar] [CrossRef] [Green Version]
- Strouthos, C.; Kogut, J.B. The Phases of Non-Compact QED(3). arXiv 2007, arXiv:0804.0300. [Google Scholar]
- Nash, D. Higher Order Corrections in (2 + 1)-Dimensional QED. Phys. Rev. Lett. 1989, 62, 3024. [Google Scholar] [CrossRef]
- Kotikov, A.V. The Critical Behavior of (2 + 1)-Dimensional QED. JETP Lett. 1993, 58, 734. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V. On the Critical Behavior of (2 + 1)-Dimensional QED. Phys. Atom. Nucl. 2012, 75, 890. [Google Scholar] [CrossRef] [Green Version]
- Gusynin, V.P.; Pyatkovskiy, P.K. Critical number of fermions in three-dimensional QED. Phys. Rev. D 2016, 94, 125009. [Google Scholar] [CrossRef] [Green Version]
- Herbut, I.F. Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation. Phys. Rev. D 2016, 94, 025036. [Google Scholar] [CrossRef] [Green Version]
- Bashir, A.; Raya, A.; Sanchez-Madrigal, S.; Roberts, C.D. Gauge invariance of a critical number of flavours in QED3. Few Body Syst. 2009, 46, 229. [Google Scholar] [CrossRef] [Green Version]
- Marston, J.B.; Affleck, I. Large-n limit of the Hubbard-Heisenberg model. Phys. Rev. B 1989, 16, 11538. [Google Scholar] [CrossRef]
- Ioffe, L.B.; Larkin, A.I. Gapless fermions and gauge fields in dielectrics. Phys. Rev. B 1989, 13, 8988. [Google Scholar] [CrossRef]
- Semenoff, G.W. Condensed Matter Simulation of a Three-dimensional Anomaly. Phys. Rev. Lett. 1984, 53, 2449. [Google Scholar] [CrossRef]
- Wallace, P.R. The Band Theory of Graphite. Phys. Rev. 1947, 71, 622. [Google Scholar] [CrossRef]
- Simmons, E.H. Comment on Higher Order Corrections in (2 + 1)-dimensional QED. Phys. Rev. D 1990, 42, 2933. [Google Scholar] [CrossRef]
- Kugo, T.; Mitchard, M.G. The Chiral Ward-Takahashi identity in the ladder approximation. Phys. Lett. B 1992, 282, 162. [Google Scholar] [CrossRef]
- Ahmad, A.; Cobos-Martinez, J.J.; Concha-Sanchez, Y.; Raya, A. Landau-Khalatnikov-Fradkin transformations in Reduced Quantum Electrodynamics. Phys. Rev. D 2016, 93, 094035. [Google Scholar] [CrossRef] [Green Version]
- James, A.; Kotikov, A.V.; Teber, S. Landau-Khalatnikov-Fradkin transformation of the fermion propagator in massless reduced QED. Phys. Rev. D 2020, 101, 045011. [Google Scholar] [CrossRef] [Green Version]
- Ball, J.S.; Chiu, T.W. Analytic Properties of the Vertex Function in Gauge Theories. 1. Phys. Rev. D 1980, 22, 2542. [Google Scholar] [CrossRef]
- Kazakov, D.I. The Method Of Uniqueness, A New Powerful Technique For Multiloop Calculations. Phys. Lett. B 1983, 133, 406. [Google Scholar] [CrossRef]
- Kazakov, D.I. Analytical Methods for Multiloop Calculations: Two Lectures on the Method of Uniqueness; Preprint JINR E2-84-410; JINR Publishing Department: Dubna, Russia, 1984. [Google Scholar]
- Teber, S.; Kotikov, A.V. The method of uniqueness and the optical conductivity of graphene: New application of a powerful technique for multiloop calculations. Theor. Math. Phys. 2017, 190, 446. [Google Scholar] [CrossRef]
- Kotikov, A.V.; Teber, S. Multi-loop techniques for massless Feynman diagram calculations. Phys. Part. Nucl. 2019, 50, 1. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V. The Gegenbauer polynomial technique: The Evaluation of a class of Feynman diagrams. Phys. Lett. B 1996, 375, 240. [Google Scholar] [CrossRef] [Green Version]
- Gracey, J.A. Computation of critical exponent eta at O(1/N(f)**2) in quantum electrodynamics in arbitrary dimensions. Nucl. Phys. B 1994, 414, 614. [Google Scholar] [CrossRef] [Green Version]
- Fischer, C.S.; Alkofer, R.; Dahm, T.; Maris, P. Dynamical chiral symmetry breaking in unquenched QED(3). Phys. Rev. D 2004, 70, 073007. [Google Scholar] [CrossRef] [Green Version]
- Teber, S. Electromagnetic current correlations in reduced quantum electrodynamics. Phys. Rev. D 2012, 86, 025005. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Teber, S. Note on an application of the method of uniqueness to reduced quantum electrodynamics. Phys. Rev. D 2013, 87, 087701. [Google Scholar] [CrossRef] [Green Version]
- Gusynin, V.P.; Hams, A.H.; Reenders, M. Nonperturbative infrared dynamics of three-dimensional QED with four fermion interaction. Phys. Rev. D 2001, 63, 045025. [Google Scholar] [CrossRef] [Green Version]
- Gracey, J.A. Electron mass anomalous dimension at O(1/(Nf(2)) in quantum electrodynamics. Phys. Lett. B 1993, 317, 415. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Teber, S. Two-loop fermion self-energy in reduced quantum electrodynamics and application to the ultrarelativistic limit of graphene. Phys. Rev. D 2014, 89, 065038. [Google Scholar] [CrossRef] [Green Version]
- Teber, S. Two-loop fermion self-energy and propagator in reduced QED3,2. Phys. Rev. D 2014, 89, 067702. [Google Scholar] [CrossRef] [Green Version]
- Teber, S.; Kotikov, A.V. Field theoretic renormalization study of reduced quantum electrodynamics and applications to the ultrarelativistic limit of Dirac liquids. Phys. Rev. D 2018, 97, 074004. [Google Scholar] [CrossRef] [Green Version]
- Gorbar, E.V.; Gusynin, V.P.; Miransky, V.P. Dynamical chiral symmetry breaking on a brane in reduced QED. Phys. Rev. D 2001, 64, 105028. [Google Scholar] [CrossRef] [Green Version]
- Marino, E.C. Quantum electrodynamics of particles on a plane and the Chern-Simons theory. Nucl. Phys. B 1993, 408, 551. [Google Scholar] [CrossRef] [Green Version]
- Dorey, N.; Mavromatos, N.E. QED in three-dimension and two-dimensional superconductivity without parity violation. Nucl. Phys. B 1992, 386, 614. [Google Scholar] [CrossRef] [Green Version]
- Kovner, A.; Rosenstein, B. Kosterlitz-Thouless mechanism of two-dimensional superconductivity. Phys. Rev. D 1990, 42, 4748. [Google Scholar] [CrossRef]
- Teber, S.; Kotikov, A.V. Review of Electron-Electron Interaction Effects in Planar Dirac Liquids. Theor. Math. Phys. 2019, 200, 1222. [Google Scholar] [CrossRef]
- Kotov, V.N.; Uchoa, B.; Pereira, V.M.; Castro Neto, A.H.; Guinea, F. Electron-Electron Interactions in Graphene: Current Status and Perspectives. Rev. Mod. Rev. 2012, 84, 1067. [Google Scholar] [CrossRef]
- Miransky, V.A.; Shovkovy, I.A. Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals. Phys. Rep. 2015, 576, 1–209. [Google Scholar] [CrossRef] [Green Version]
- Gusynin, V.P. Graphene and quantum electrodynamics. Probl. Atomic Sci. Technol. 2013, N3, 29. [Google Scholar]
- Kotikov, A.V.; Teber, S. Critical behaviour of reduced QED4,3 and dynamical fermion gap generation in graphene. Phys. Rev. D 2016, 94, 114010. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotikov, A.V.; Teber, S. Critical Behavior of (2 + 1)-Dimensional QED: 1/N Expansion. Particles 2020, 3, 345-354. https://doi.org/10.3390/particles3020026
Kotikov AV, Teber S. Critical Behavior of (2 + 1)-Dimensional QED: 1/N Expansion. Particles. 2020; 3(2):345-354. https://doi.org/10.3390/particles3020026
Chicago/Turabian StyleKotikov, Anatoly V., and Sofian Teber. 2020. "Critical Behavior of (2 + 1)-Dimensional QED: 1/N Expansion" Particles 3, no. 2: 345-354. https://doi.org/10.3390/particles3020026
APA StyleKotikov, A. V., & Teber, S. (2020). Critical Behavior of (2 + 1)-Dimensional QED: 1/N Expansion. Particles, 3(2), 345-354. https://doi.org/10.3390/particles3020026