Natural Frequency and Damping Characterisation of Aerospace Grade Composite Plates
Abstract
1. Introduction
2. Methodology
2.1. Experimental Work
2.2. Finite Element Analysis
3. Results and Discussion
3.1. Natural Frequency
3.2. Damping Results
3.3. Finite Element Analysis Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| MODE | Orientation 1 [Hz] | Orientation 2 [Hz] |
|---|---|---|
| 1 | 5.18 × 102 | 4.73 × 102 |
| 2 | 1.02 × 103 | 9.89 × 102 |
| 3 | 2.77 × 103 | 2.83 × 103 |
| 4 | 3.16 × 103 | 2.97 × 103 |
| 5 | 3.91 × 103 | 3.71 × 103 |
| 6 | 3.96 × 103 | 3.96 × 103 |
| 7 | 5.24 × 103 | 5.21 × 103 |
| 8 | 5.91 × 103 | 5.73 × 103 |
| 9 | 5.94 × 103 | 5.88 × 103 |
| 10 | 6.10 × 103 | 6.10 × 103 |
References
- Admas, R.; Bacon, D. Effect of fiber orientation and laminate geometry on the dynamic properties of CFRP. J. Compos. Mater. 1973, 7, 402–408. [Google Scholar] [CrossRef]
- Kherredine, L.; Gouasmi, R.; Zeghib, N.E. Evaluation and measurement of the damping properties of laminated CFRP composite plates. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2012; Volume 28. [Google Scholar]
- Chen, C.-S.; Fung, C.-P. Non-Linear vibration of initially stressed hybrid composite plates. J. Sound Vib. 2004, 274, 1013–1029. [Google Scholar] [CrossRef]
- Singh, G.; Rao, G.V. Non-Linear vibrations of simply supported rectangular cross-ply plates. J. Sound Vib. 1990, 154, 213–226. [Google Scholar] [CrossRef]
- Adams, R.; Maheri, M.R. Dynamic flexural properties of anisotropic fibrous composite beams. Compos. Sci. Technol. 1994, 50, 497–514. [Google Scholar] [CrossRef]
- Berthelot, J.; Sefrani, Y. Damping analysis of unidirectional glass and Kevlar fibre composites. Compos. Sci. Technol. 2004, 64, 1261–1278. [Google Scholar] [CrossRef]
- Yim, J.H.; Jang, B.Z. An analytical method for prediction of the damping in symmetric balanced laminated composites. Polym. Compos. 1999, 20, 192–199. [Google Scholar] [CrossRef]
- Gorman, D. Exact Solution for the Free In-plane Vibration of Rectangular Plates with Two Opposite Simply Supported. J. Sound Vib. 2006, 294, 131–161. [Google Scholar] [CrossRef]
- Adams, R.; Bacon, D. Measurement of the flexural damping capacity and dynamic Young’s modulus if metals and reinforced plastics. J. Phys. D Appl. Phys. 1973, 6, 27–41. [Google Scholar] [CrossRef]
- Adam, R.; Fox, M.; Floor, R.; Friend, R.; Hewitt, R. The dynamic properties of unidirectional carbon and glass fiber reinforced plastics in torsion and flexure. J. Compos. Mater. 1969, 3, 594–603. [Google Scholar] [CrossRef]
- Ni, R.G.; Adams, R.D. The Damping and Dynamic Moduli of Symmetric Laminated Composite Beams—Theoretical and Experimental Results. J. Compos. Mater. 1984, 18, 104–121. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Huang, J.-H.; Ma, C.-C. Vibration analysis of angle-ply laminated composite plates with an embedded piezoceramic layer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 1084–1099. [Google Scholar] [PubMed]
- Polytec. OFV-5000 Vibrometer Controller and OFV-505/503; Polytec: Waldbronn, Germany.
- LabVIEW User Manual; National Instruments: Austin, TX, USA, 2003.
- Hallquist, J.O. LS-DYNA Theory Manual; Livermore Software Technology Corporation: Livernore, CA, USA, 2006. [Google Scholar]
- Bergland, G.D. A Guided Tour of the Fast Fourier Transform. IEEE Spectr. 2009, 6, 41–52. [Google Scholar] [CrossRef]
- “Matlab Help,” MathWorks. Available online: https://www.mathworks.com/help/matlab/index.html?s_tid=hc_panel (accessed on 2 November 2025).


















| Aluminium | Steel | |
|---|---|---|
| Density, | ||
| Young Modulus, | ||
| Poisson’s Ratio, |
| Density, | |
| Tension | |
| Tension | |
| Tension | |
| Compression | |
| Compression | |
| Compression | |
| Sweep Rate | 1st Mode [Hz] | 2nd Mode [Hz] | 3rd Mode [Hz] | 4th Mode [Hz] |
|---|---|---|---|---|
| 1 Hz/s | 453.7 | 1094.2 | 1250.9 | 1318.1 |
| 5 Hz/s | 451.2 | 1100.0 | 1247.0 | 1317.0 |
| Panel | Freq1 | Freq2 | Freq3 | Freq4 | Damp1 | Damp2 | Damp3 | Damp4 | ||
|---|---|---|---|---|---|---|---|---|---|---|
| With Shaker Subtraction | Point 1 | 1 | 400.6 | 1065 | 1261 | - | 0.00724 | 0.00657 | 0.01269 | - |
| 2 | 401.6 | 1060 | 1263 | 1317 | 0.01096 | 0.01038 | 0.01584 | 0.02506 | ||
| 3 | 408.2 | 1072 | 1261 | 1330 | 0.00931 | 0.00746 | 0.01586 | 0.03308 | ||
| Point 2 | 1 | 374 | - | 1231 | 1305 | 0.00668 | - | 0.04224 | 0.01839 | |
| 2 | 401.6 | - | 1246 | 1324 | 0.00971 | - | 0.03772 | 0.03474 | ||
| 3 | 408.3 | - | - | - | 0.01053 | - | - | - | ||
| Point 3 | 1 | 373.2 | 1008 | 1229 | 1308 | 0.00777 | 0.00893 | 0.02848 | 0.01682 | |
| 2 | 401.5 | 1061 | 1253 | 1312 | 0.01021 | 0.00943 | 0.02713 | 0.03277 | ||
| 3 | 407.6 | 1073 | - | - | 0.01079 | 0.00839 | - | - | ||
| Average | 397.4 | 1056.5 | 1249.14 | 1316 | 0.00925 | 0.00853 | 0.02571 | 0.02681 | ||
| 13.06 | 22.25 | 13.27 | 8.77 | 0.00152 | 0.00125 | 0.01063 | 0.03714 | |||
| % | 3.286 | 2.106 | 1.062 | 0.667 | 16.48 | 14.652 | 41.36 | 138.53 |
| Panel | Freq1 | Freq2 | Freq3 | Freq4 | Damp1 | Damp2 | Damp3 | Damp4 | ||
|---|---|---|---|---|---|---|---|---|---|---|
| With Shaker Subtraction | Point 1 | 1 | 451.2 | 1100 | 1251 | 1326 | 0.0082 | 0.00909 | 0.02158 | 0.02866 |
| 2 | 457.8 | 1108 | 1262 | 1330 | 0.00743 | 0.01173 | 0.01347 | 0.02707 | ||
| 3 | 459.4 | 1099 | 1261 | 1333 | 0.00892 | 0.00819 | 0.01507 | 0.02926 | ||
| Point 2 | 1 | 451.5 | - | 1258 | 1324 | 0.00864 | - | 0.02782 | 0.03399 | |
| 2 | 455 | - | 1254 | 1323 | 0.00923 | - | 0.04226 | 0.02268 | ||
| 3 | 459.5 | - | 1257 | 1324 | 0.00936 | - | 0.02705 | 0.03021 | ||
| Point 3 | 1 | 431.6 | 1049 | 1201 | 1262 | 0.00834 | 0.00858 | 0.0358 | 0.0412 | |
| 2 | 457.4 | 1109 | 1258 | 1322 | 0.00787 | 0.01262 | 0.01351 | 0.02799 | ||
| 3 | 460 | 1100 | 1256 | 1319 | 0.00913 | 0.01 | 0.0207 | 0.02654 | ||
| Average | 453.7 | 1094.2 | 1250.9 | 1318.1 | 0.00857 | 0.01004 | 0.02414 | 0.02973 | ||
| 8.42 | 20.59 | 17.92 | 20.23 | 0.00062 | 0.00163 | 0.00951 | 0.00496 | |||
| % | 1.855 | 1.881 | 1.432 | 1.535 | 7.264 | 16.27 | 39.39 | 16.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vignjevic, R.; Djordjevic, N.; de Caceres Prieto, J.; Filipovic, N.; Jovicic, M.; Jovicic, G. Natural Frequency and Damping Characterisation of Aerospace Grade Composite Plates. Vibration 2025, 8, 72. https://doi.org/10.3390/vibration8040072
Vignjevic R, Djordjevic N, de Caceres Prieto J, Filipovic N, Jovicic M, Jovicic G. Natural Frequency and Damping Characterisation of Aerospace Grade Composite Plates. Vibration. 2025; 8(4):72. https://doi.org/10.3390/vibration8040072
Chicago/Turabian StyleVignjevic, Rade, Nenad Djordjevic, Javier de Caceres Prieto, Nenad Filipovic, Milos Jovicic, and Gordana Jovicic. 2025. "Natural Frequency and Damping Characterisation of Aerospace Grade Composite Plates" Vibration 8, no. 4: 72. https://doi.org/10.3390/vibration8040072
APA StyleVignjevic, R., Djordjevic, N., de Caceres Prieto, J., Filipovic, N., Jovicic, M., & Jovicic, G. (2025). Natural Frequency and Damping Characterisation of Aerospace Grade Composite Plates. Vibration, 8(4), 72. https://doi.org/10.3390/vibration8040072

