Damping Identification Sensitivity in Flutter Speed Estimation
Abstract
:1. Introduction
- First application of FRVF- and LF-identified modal parameters for a two-degree-of-freedom (2-DoF) aeroelastic model;
- Development of a reduced-order model for the XB-2 wing;
- Use of LF and FRVF results for flutter speed estimation;
- Demonstration of a simplified ROM-based approach for critical speed prediction;
- Comparative analysis of flutter speed predictions using different identification methods.
2. Materials and Methods
- Experimental Vibration Testing. A specimen wing is selected to undergo a GVT campaign, potentially also with different configurations in terms of shape and mass. The specimen and the testing regime are introduced in Section 2.1.
- Modal Parameter Identification. From the recorded data, modal parameters are identified using different methods. It is not uncommon that this will result in different identified values of across the methods. Here, the LF, FRVF, and N4SID are considered as identification methods; however, N4SID is not discussed in depth as it is a classical and well-known technique. On the other hand, the FRVF and LF are introduced in Section 2.2 and Section 2.3, respectively.
- 2 DoF Model Fitting. The modal parameters obtained are used for model fitting. The model itself is described in Section 2.4.
- Flutter Speed Estimation. The classical method is used to obtain the estimated flutter speeds for the different scenarios and methods, thus giving an idea of the relationship between and the flutter speed itself. These findings are presented in Section 4.
2.1. The Flexible Wing Model
2.2. Fast Relaxed Vector Fitting
2.3. Loewner Framework
2.4. The Simplified Aeroelastic Model
- The wing shape is assumed to be rectangular;
- The flexural stiffness EI, the torsional stiffness GJ, and the mass distribution are assumed to remain constant along the span;
- The identified are assumed to be dependent only on structural effects in the wind-off results;
- XB-2 second mode (1st coupled mode) is assumed to be a pure twisting mode.
- Initiate an estimation, usually the still air value, of p, said ;
- Evaluate the aerodynamics, in our case ;
- Solve the eigenvalue () problem for Equation (37) and obtain a new set of , ;
- Iterate between 2 and 3 until .
3. Results
4. Conclusions
- The flutter speed of the XB-2 wing is predicted using a two-degree-of-freedom reduced-order model, demonstrating reliable performance across scenarios;
- FRVF and LF reliably estimate natural frequencies and damping ratios;
- The flutter speeds predicted by the LF- and FRVF-derived models align closely with those obtained from N4SID, with deviations not exceeding 5% for LF and 3% for FRVF;
- The variation in the damping ratio induced by the methods significantly affects flutter speed predictions, emphasising the importance of accurate damping ratio identification.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Tran, T.; Pham, Q.H.; Hoang, N.T. Research on stability of laminated composite plate under nonlinear aerodynamic load. Theor. Appl. Mech. Lett. 2023, 13, 100461. [Google Scholar] [CrossRef]
- Yuan, Y.; Au, F.T.; Yang, D.; Zhang, J. An active learning Kriging-based Bayesian framework for probabilistic structural model exploration. J. Sound Vib. 2025, 596, 118730. [Google Scholar] [CrossRef]
- Dessena, G.; Civera, M.; Zanotti Fragonara, L.; Ignatyev, D.I.; Whidborne, J.F. A Loewner-Based System Identification and Structural Health Monitoring Approach for Mechanical Systems. Struct. Control Health Monit. 2023, 2023, 1–22. [Google Scholar] [CrossRef]
- Champneys, M.D. Hawk Data API. 2023. Available online: https://github.com/MDCHAMP/hawk-data (accessed on 24 April 2025).
- Haywood-Alexander, M.; Mills, R.S.; Champneys, M.D.; Jones, M.R.; Bonney, M.S.; Wagg, D.; Rogers, T.J. Full-scale modal testing of a Hawk T1A aircraft for benchmarking vibration-based methods. J. Sound Vib. 2024, 576, 118295. [Google Scholar] [CrossRef]
- Civera, M.; Calamai, G.; Zanotti Fragonara, L. Experimental modal analysis of structural systems by using the fast relaxed vector fitting method. Struct. Control Health Monit. 2021, 28, 1–23. [Google Scholar] [CrossRef]
- Guillaume, P.; Verboven, P.; Vanlanduit, S. A poly-reference implementation of the least-squares complex frequency-domain estimator. In Proceedings of the IMAC: Conference and Exposition on Structural Dynamics, 21st, 2003–IMAC XXI, Kissimmee, FL, USA, 3–6 February 2003; pp. 183–192. [Google Scholar]
- El-Kafafy, M.; Guillaume, P.; Peeters, B. Modal parameter estimation by combining stochastic and deterministic frequency-domain approaches. Mech. Syst. Signal Process. 2013, 35, 52–68. [Google Scholar] [CrossRef]
- Steffensen, M.T.; Döhler, M.; Tcherniak, D.; Thomsen, J.J. Variance estimation of modal parameters from the poly-reference least-squares complex frequency-domain algorithm. Mech. Syst. Signal Process. 2025, 223, 111905. [Google Scholar] [CrossRef]
- Van Overschee, P.; De Moor, B. N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 1994, 30, 75–93. [Google Scholar] [CrossRef]
- Dessena, G.; Civera, M.; Pontillo, A.; Ignatyev, D.I.; Whidborne, J.F.; Zanotti Fragonara, L. Noise-robust modal parameter identification and damage assessment for aero-structures. Aircr. Eng. Aerosp. Technol. 2024, 96, 27–36. [Google Scholar] [CrossRef]
- Dessena, G.; Civera, M.; Marcos, A.; Chiaia, B. Multi-input Multi-output Loewner Framework for Vibration-based Damage Detection on a Trainer Jet. arXiv 2024, arXiv:2410.20160. [Google Scholar] [CrossRef]
- Civera, M.; Calamai, G.; Zanotti Fragonara, L. System identification via fast relaxed vector fitting for the structural health monitoring of masonry bridges. Structures 2021, 30, 277–293. [Google Scholar] [CrossRef]
- Dowell, E.H. Nonlinear flutter of curved plates. AIAA J. 1969, 7, 424–431. [Google Scholar] [CrossRef]
- Edwards, J.W.; Bennett, R.M.; Whitlow, W.; Seidel, D.A. Time-marching transonic flutter solutions including angle-of-attack effects. J. Aircr. 1983, 20, 899–906. [Google Scholar] [CrossRef]
- Dimitriadis, G.; Cooper, J.E. Flutter Prediction from Flight Flutter Test Data. J. Aircr. 2001, 38, 355–367. [Google Scholar] [CrossRef]
- Chen, X.; Zha, G.C.; Yang, M.T. Numerical simulation of 3-D wing flutter with fully coupled fluid–structural interaction. Comput. Fluids 2007, 36, 856–867. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, H. Parameterized aeroelastic modeling and flutter analysis for a folding wing. J. Sound Vib. 2012, 331, 308–324. [Google Scholar] [CrossRef]
- Sanmugadas, V.; Miglani, J.; Zhao, W.; Desai, S.; Schetz, J.A.; Kapania, R.K. Development of a low-cost flutter test bed with an EPS foam model for preliminary wing design. Aerosp. Sci. Technol. 2024, 150, 109171. [Google Scholar] [CrossRef]
- Namini, A.; Albrecht, P.; Bosch, H. Finite Element-Based Flutter Analysis of Cable-Suspended Bridges. J. Struct. Eng. 1992, 118, 1509–1526. [Google Scholar] [CrossRef]
- Ge, Y.; Tanaka, H. Aerodynamic flutter analysis of cable-supported bridges by multi-mode and full-mode approaches. J. Wind Eng. Ind. Aerodyn. 2000, 86, 123–153. [Google Scholar] [CrossRef]
- Tian, K.; Wang, Y.; Cao, D.; Yu, K. Approximate global mode method for flutter analysis of folding wings. Int. J. Mech. Sci. 2024, 265, 108902. [Google Scholar] [CrossRef]
- Wright, J.R.; Cooper, J.E. Introduction to Aircraft Aeroelasticity and Loads; Wiley: Chichester, UK, 2014. [Google Scholar] [CrossRef]
- Pontillo, A. High Aspect Ratio Wings on Commercial Aircraft: A Numerical and Experimental Approach. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2020. Available online: https://dspace.lib.cranfield.ac.uk/handle/1826/20266 (accessed on 1 January 2024).
- Pontillo, A.; Hayes, D.; Dussart, G.X.; Lopez Matos, G.E.; Carrizales, M.A.; Yusuf, S.Y.; Lone, M.M. Flexible High Aspect Ratio Wing: Low Cost Experimental Model and Computational Framework. In Proceedings of the 2018 AIAA Atmospheric Flight Mechanics Conference, Reston, VA, USA, 8–12 January 2018; pp. 1–15. [Google Scholar] [CrossRef]
- Yusuf, S.Y.; Hayes, D.; Pontillo, A.; Carrizales, M.A.; Dussart, G.X.; Lone, M.M. Aeroelastic Scaling for Flexible High Aspect Ratio Wings. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; pp. 1–14. [Google Scholar] [CrossRef]
- Hayes, D.; Pontillo, A.; Yusuf, S.Y.; Lone, M.M.; Whidborne, J. High aspect ratio wing design using the minimum exergy destruction principle. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 21. [Google Scholar] [CrossRef]
- Dessena, G. Identification of Flexible Structures Dynamics. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2023. Available online: https://dspace.lib.cranfield.ac.uk/handle/1826/20261 (accessed on 1 January 2024).
- Dessena, G.; Ignatyev, D.I.; Whidborne, J.F.; Pontillo, A.; Zanotti Fragonara, L. Ground vibration testing of a flexible wing: A benchmark and case study. Aerospace 2022, 9, 438. [Google Scholar] [CrossRef]
- Dessena, G.; Ignatyev, D.I.; Whidborne, J.F.; Pontillo, A.; Zanotti Fragonara, L.; Fragonara, L. Ground vibration testing of a high aspect ratio wing with revolving clamp. In Proceedings of the 33rd Congress of the International Council of the Aeronautical Sciences, ICAS 2022, Stockholm, Sweden, 4–9 September 2022; Volume 6, pp. 4169–4181. [Google Scholar] [CrossRef]
- Tsatsas, I.; Pontillo, A.; Lone, M. Aeroelastic damping estimation for a flexible high-aspect-ratio wing. J. Aerosp. Eng. 2022, 35, 1–27. [Google Scholar] [CrossRef]
- Dessena, G.; Pontillo, A.; Ignatyev, D.I.; Whidborne, J.F.; Zanotti Fragonara, L. A paradigm shift to assembly-like finite element model updating. arXiv 2024, arXiv:2502.02592. [Google Scholar] [CrossRef]
- Dessena, G.; Pontillo, A.; Ignatyev, D.I.; Whidborne, J.F.; Zanotti Fragonara, L. Identification of Nonlinearity Sources in a Flexible Wing. J. Aerosp. Eng. 2025. [Google Scholar] [CrossRef]
- Deschrijver, D.; Mrozowski, M.; Dhaene, T.; De Zutter, D. Macromodeling of multiport systems using a fast implementation of the vector fitting method. IEEE Microw. Wirel. Components Lett. 2008, 18, 383–385. [Google Scholar] [CrossRef]
- Gustavsen, B.; Semlyen, A. Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Deliv. 1999, 14, 1052–1061. [Google Scholar] [CrossRef]
- Gustavsen, B. Relaxed vector fitting algorithm for rational approximation of frequency domain responses. In Proceedings of the 2006 IEEE Workship on Signal Propagation on Interconnects, Berlin, Germany, 9–12 May 2006; Number 1. pp. 97–100. [Google Scholar] [CrossRef]
- Grivet-Talocia, S.; Gustavsen, B. Passive Macromodeling: Theory and Applications; Wiley: Hoboken, NJ, USA, 2016; p. 869. [Google Scholar]
- Schwarz, B.J.; Richardson, M.H. Experimental Modal Analysis. In Proceedings of the CSI Reliability Week, Orlando, FL, USA, 4–7 October 1999; pp. 1–12. [Google Scholar]
- Grivet-Talocia, S. Package macromodeling via time-domain vector fitting. IEEE Microw. Wirel. Components Lett. 2003, 13, 472–474. [Google Scholar] [CrossRef]
- Grivet-Talocia, S. The Time-Domain Vector Fitting Algorithm for Linear Macromodeling. AEU-Int. J. Electron. Commun. 2004, 58, 293–295. [Google Scholar] [CrossRef]
- Mendes Maia, N.M.; Montalvão e Silva, J.M. Theoretical and Experimental Modal Analysis; Research Studies Press: Baldock, UK, 1997. [Google Scholar]
- Gustavsen, B. Improving the pole relocating properties of vector fitting. In Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006; Volume 21. [Google Scholar] [CrossRef]
- Lefteriu, S.; Antoulas, A.C. Modeling multi-port systems from frequency response data via tangential interpolation. In Proceedings of the 2009 IEEE Workshop on Signal Propagation on Interconnects, Strasbourg, France, 12–15 May 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Quero, D.; Vuillemin, P.; Poussot-Vassal, C. A generalized state-space aeroservoelastic model based on tangential interpolation. Aerospace 2019, 6, 9. [Google Scholar] [CrossRef]
- Dessena, G.; Civera, M.; Ignatyev, D.I.; Whidborne, J.F.; Zanotti Fragonara, L.; Chiaia, B. The Accuracy and Computational Efficiency of the Loewner Framework for the System Identification of Mechanical Systems. Aerospace 2023, 10, 571. [Google Scholar] [CrossRef]
- Dessena, G.; Civera, M. Improved tangential interpolation-based multi-input multi-output modal analysis of a full aircraft. Eur. J. Mech.-A/Solids 2025, 110, 105495. [Google Scholar] [CrossRef]
- Dessena, G.; Civera, M.; Yousefi, A.; Surace, C. NExT-LF: A Novel Operational Modal Analysis Method via Tangential Interpolation. Int. J. Mech. Syst. Dyn. 2025. [Google Scholar] [CrossRef]
- Löwner, K. Über monotone matrixfunktionen. Math. Z. 1934, 38, 177–216. [Google Scholar] [CrossRef]
- Antoulas, A.C.; Lefteriu, S.; Ionita, A.C. A Tutorial Introduction to the Loewner Framework for Model Reduction. In Model Reduction and Approximation; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2017; Chapter 8; pp. 335–376. [Google Scholar] [CrossRef]
- Mayo, A.; Antoulas, A. A framework for the solution of the generalized realization problem. Linear Algebra Its Appl. 2007, 425, 634–662. [Google Scholar] [CrossRef]
- Kramer, B.; Gugercin, S. Tangential interpolation-based eigensystem realization algorithm for MIMO systems. Math. Comput. Model. Dyn. Syst. 2016, 22, 282–306. [Google Scholar] [CrossRef]
- Lefteriu, S.; Antoulas, A.C. A new approach to modeling multiport systems from frequency-domain data. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2010, 29, 14–27. [Google Scholar] [CrossRef]
- Dessena, G. A tutorial on the Loewner-Based System Identification and Structural Health Monitoring Approach for Mechanical Systems. 2023. Available online: https://doi.org/10.17862/cranfield.rd.16636279 (accessed on 19 April 2023).
- Li, D.F.; Wang, Z.Z.; Da Ronch, A.; Chen, G. An efficient reduced-order framework for active/passive hybrid flutter suppression. Aeronaut. J. 2023, 127, 24–40. [Google Scholar] [CrossRef]
- Sudha, U.; Deodhare, G.; Venkatraman, K. A comparative assessment of flutter prediction techniques. Aeronaut. J. 2020, 124, 1945–1978. [Google Scholar] [CrossRef]
- Amato, E.M.; Polsinelli, C.; Cestino, E.; Frulla, G.; Joseph, N.; Carrese, R.; Marzocca, P. HALE wing experiments and computational models to predict nonlinear flutter and dynamic response. Aeronaut. J. 2019, 123, 912–946. [Google Scholar] [CrossRef]
- Coleman, R.P. Damping Formulas and Experimental Values of Damping in Flutter Models; Technical Report Technical Note No. 751; National Advisory Committee for Aeronautics (NACA): Washington, DC, USA, 1940.
- Soroka, W.W. Note on the Relations Between Viscous and Structural Damping Coefficients. J. Aeronaut. Sci. 1949, 16, 409–410. [Google Scholar] [CrossRef]
- Naeim, F.; Kelly, J.M. Design of Seismic Isolated Structures; John Wiley: Hoboken, NJ, USA, 1999; p. 304. [Google Scholar] [CrossRef]
- Gu, Y.; Yang, Z. Modified p-k Method for Flutter Solution with Damping Iteration. AIAA J. 2012, 50, 507–510. [Google Scholar] [CrossRef]
- Civera, M.; Grivet-Talocia, S.; Surace, C.; Zanotti Fragonara, L. A generalised power-law formulation for the modelling of damping and stiffness nonlinearities. Mech. Syst. Signal Process. 2021, 153, 107531. [Google Scholar] [CrossRef]
- Keane, A.J.; Sóbester, A.; Scanlan, J.P. Small Unmanned Fixed-Wing Aircraft Design; Wiley: Chichester, UK, 2017. [Google Scholar] [CrossRef]
- Afonso, F.; Vale, J.; Oliveira, É.; Lau, F.; Suleman, A. Non-linear aeroelastic response of high aspect-ratio wings in the frequency domain. Aeronaut. J. 2017, 121, 858–876. [Google Scholar] [CrossRef]
Scenario | Characteristics | Mass [kg] |
---|---|---|
1 | Baseline | 3.024 |
2 | Added masses: 75 g at 1010 mm, 12 g at 1050 mm and 61 g at 1365 mm. | 3.172 |
3 | Added masses: 88 g at 1010 mm, 51 g at 1050 mm, 83 g at 1205 mm and 61 g at 1365 mm. | 3.307 |
4 | Added masses: same as Scenario 2 plus 181 g at 570 mm and 170 g at 665 mm. | 3.658 |
Natural Frequency [Hz] (Difference with regard to N4SID [%]) | |||||||||
Mode | 1st Bending | 1st Coupled | 2nd Coupled | ||||||
Scenario | N4SID | LF | FRVF | N4SID | LF | FRVF | N4SID | LF | FRVF |
1 | 3.190 | 3.202 | 3.203 | 11.896 | 11.886 | 11.858 | 17.763 | 17.703 | 17.725 |
– | (0.38) | (0.41) | – | (−0.08) | (−0.32) | – | (−0.34) | (−0.21) | |
2 | 2.957 | 2.958 | 2.945 | 12.096 | 12.134 | 12.083 | 17.350 | 17.302 | 17.294 |
– | (0.03) | (−0.41) | – | (0.31) | (−0.11) | – | (−0.28) | (−0.32) | |
3 | 2.775 | 2.769 | 2.788 | 12.002 | 12.025 | 12.014 | 17.079 | 17.101 | 17.023 |
– | (−0.22) | (0.47) | – | (0.19) | (0.10) | – | (0.13) | (−0.33) | |
4 | 2.729 | 2.725 | 2.727 | 11.970 | 11.965 | 11.938 | 15.067 | 15.052 | 15.004 |
– | (−0.15) | (−0.07) | – | (−0.04) | (−0.27) | – | (−0.10) | (−0.42) | |
Damping Ratio [-] (Difference with regard to N4SID [%]) | |||||||||
Mode | 1st Bending | 1st Coupled | 2nd Coupled | ||||||
Scenario | N4SID | LF | FRVF | N4SID | LF | FRVF | N4SID | LF | FRVF |
1 | 0.032 | 0.040 | 0.028 | 0.066 | 0.063 | 0.065 | 0.058 | 0.061 | 0.062 |
– | (25.00) | (−12.50) | – | (−4.55) | (−1.52) | – | (5.17) | (6.90) | |
2 | 0.021 | 0.024 | 0.025 | 0.060 | 0.057 | 0.058 | 0.061 | 0.056 | 0.060 |
– | (14.29) | (19.05) | – | (−5.00) | (−3.33) | – | (−8.20) | (−1.64) | |
3 | 0.019 | 0.022 | 0.021 | 0.058 | 0.055 | 0.057 | 0.050 | 0.050 | 0.057 |
– | (15.79) | (10.53) | – | (−5.17) | (−1.72) | – | (0.00) | (14.00) | |
4 | 0.019 | 0.021 | 0.019 | 0.050 | 0.048 | 0.052 | 0.046 | 0.039 | 0.038 |
– | (10.53) | (0.00) | – | (−4.00) | (4.00) | – | (−15.22) | (−17.39) |
Property | Value |
---|---|
m | mass divided by area |
1.225 kgm−3 | |
0.25 × c | |
172 mm | |
7.143 (NACA 23015) | |
e | 0 |
1.385 m |
Flutter Onset Speed [ms−1] (Difference with Regard to N4SID [%]) | ||||
---|---|---|---|---|
Scenario | Baseline | 2 | 3 | 4 |
N4SID | 22.710 | 23.336 | 23.285 | 23.205 |
LF | 21.498 | 22.200 | 22.116 | 21.991 |
(−5.34) | (−4.87) | (−5.02) | (−5.23) | |
FRVF | 22.057 | 22.743 | 22.727 | 22.590 |
(−2.88) | (−2.54) | (−2.40) | (−2.65) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dessena, G.; Pontillo, A.; Civera, M.; Ignatyev, D.I.; Whidborne, J.F.; Zanotti Fragonara, L. Damping Identification Sensitivity in Flutter Speed Estimation. Vibration 2025, 8, 24. https://doi.org/10.3390/vibration8020024
Dessena G, Pontillo A, Civera M, Ignatyev DI, Whidborne JF, Zanotti Fragonara L. Damping Identification Sensitivity in Flutter Speed Estimation. Vibration. 2025; 8(2):24. https://doi.org/10.3390/vibration8020024
Chicago/Turabian StyleDessena, Gabriele, Alessandro Pontillo, Marco Civera, Dmitry I. Ignatyev, James F. Whidborne, and Luca Zanotti Fragonara. 2025. "Damping Identification Sensitivity in Flutter Speed Estimation" Vibration 8, no. 2: 24. https://doi.org/10.3390/vibration8020024
APA StyleDessena, G., Pontillo, A., Civera, M., Ignatyev, D. I., Whidborne, J. F., & Zanotti Fragonara, L. (2025). Damping Identification Sensitivity in Flutter Speed Estimation. Vibration, 8(2), 24. https://doi.org/10.3390/vibration8020024