Difference Thresholds for the Perception of Sinusoidal Vertical Stimuli of Whole-Body Vibrations in Ranges of Amplitude and Frequency Relevant to Ride Comfort
Abstract
:1. Introduction
1.1. Basic Principles
1.2. Previous Studies
1.3. Motivation
2. Test Environment and Methodology
3. Results
3.1. Effect of Amplitude
3.2. Effect of Frequency
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Diagrams and Tables
Sensory Cells | Response to | Optimum Frequency Range | Occurring in Skin Layer |
---|---|---|---|
Merkel cell | pressure | 0.3–5 Hz | Upper skin layer |
Meissner cell | Slight contact (speed) | 3–40 Hz | Middle skin layer |
Ruffini cell | Stretching of skin (speed) | 14–400 Hz | Middle skin layer |
Paccini cell | Fast vibrations (acceleration) | 40–500 Hz | Lower skin layer |
Frequency | 1.3 Hz | 1.3 Hz | 6 Hz | 6 Hz | 6 Hz |
---|---|---|---|---|---|
Amplitude | 0.2 m/s² | 0.5 m/s² | 0.2 m/s² | 0.5 m/s² | 1.2 m/s² |
Mean | 10.7 | 6.2 | 8.4 | 7.6 | 6.5 |
Standard deviation | 1.5 | 1.9 | 2.2 | 1.9 | 1.9 |
Median value | 11.0 | 6.7 | 8.4 | 7.9 | 7.3 |
Upper quartile | 10.0 | 4.4 | 7.7 | 5.9 | 5.0 |
Lower quartile | 11.3 | 7.3 | 9.8 | 8.7 | 7.6 |
IQR | 1.2 | 2.9 | 2.1 | 2.8 | 2.7 |
d | Interpretation acc. to Cohen [20] |
---|---|
<0 | Negative effect |
0.0 | No effect |
0.1 | |
0.2 | Minor effect |
0.3 | |
0.4 | |
0.5 | Average effect |
0.6 | |
0.7 | |
0.8 | Major effect |
0.9 | |
≥1.0 |
Statistical Decision | Applicable to the Population: | |
---|---|---|
Null Hypothesis H0 | Alternative Hypothesis H1 | |
Decision in favour of H0 | Correct decision | Wrong decision (type II error) |
Decision in favour of H1 | Wrong decision (type I error) | Correct decision |
Appendix B
References
- Goldstein, E.B. Wahrnehmungspsychologie, 9th ed.; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-38274018925. [Google Scholar]
- Engen, T. Psycohophysics. In Experimental Psychology, 3rd ed.; Kling, J.W., Ed.; Holt, Rinehart and Winston, Inc.: New York, NY, USA, 1972; pp. 1–46. ISBN 978-0030028069. [Google Scholar]
- Gescheider, G.A. Psychophysics: Method and Theory; Erlbaum, L., Ed.; Halsted Press: Hillsdale, NJ, USA, 1976. [Google Scholar]
- Pütter, A. Studien zur Theorie der Reizvorgänge. Pflügers Arch. Gesamte Physiol. Menschen Tiere 1918, 171, 201–261. [Google Scholar] [CrossRef]
- Nuzzo, R. Scientific method: Statistical errors. Nature 2014, 506, 150–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortz, J. Statistik Für Human- und Sozialwissenschaftler, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Jones, L.A.; Lederman, S.J. Human Hand Function; Oxford University Press (OUP): New, York, NY, USA, 2006. [Google Scholar]
- Goldstein, E.B. Wahrnehmungspsychologie, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Morioka, M.; Griffin, M. Difference thresholds for intensity perception of whole-body vertical vibration: Effect of frequency and magnitude. J. Acoust. Soc. Am. 2000, 107, 620–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellmann, M.A. Perception of Whole-Body Vibrations: From Basic Experiments to Effects of Seat and Steering-Wheel Vibrations on the Passenger’s Comfort Inside Vehicles. Ph.D. Thesis, Uni Oldenburg, Shaker Verlag GmbH, Oldenburg, Germany, 2002. [Google Scholar]
- Bellmann, M.A.; Mellert, V.; Reckhardt, C.; Remmers, H. Basic Experiments on the Perception of vertical Whole-Body Vibrations; Fortschritte der Akustik, DAGA: Hamburg, Germany, 2001; pp. 494–495. [Google Scholar]
- Bellmann, M.A.; Remmers, H. Grundlegende Experimente Der Wahrnehmung Von Vertikalen Ganzkörperschwingungen; VDI-Berichte Nr. 1821; Tagungsband: Darmstadt, Germany, 2004; pp. 251–270. [Google Scholar]
- Baumann, I.; Bellmann, M.A.; Mellert, V.; Weber, H. Wahrnehmungs- und Unterschiedsschwellen Von Vibrationen Auf Einem Kraftfahrzeugsitz; Fortschritte der Akustik, DAGA: Hamburg, Germany, 2001; pp. 292–293. ISBN 3-9804568-9-7. [Google Scholar]
- Matsumoto, Y.; Maeda, S.; Oji, Y. Influence of Frequency on Difference Thresholds for Magnitude of Vertical Sinusoidal Whole-Body Vibration. Ind. Health 2002, 40, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forta, N.G.; Morioka, M.; Griffin, M. Difference thresholds for the perception of whole-body vertical vibration: Dependence on the frequency and magnitude of vibration. Ergonmics 2009, 52, 1305–1310. [Google Scholar] [CrossRef] [PubMed]
- VDI 2057-1. Einwirkungen Mechanischer Schwingungen auf Den Menschen; Verein Deutscher Ingenieure, Beuth Verlag GmbH: Berlin, Germany, 2002.
- MTS. RPC Pro Software. Available online: http://www.mts.com (accessed on 1 February 2020).
- Levitt, H. Transformed Up-Down Methods in Psychoacoustics. J. Acoust. Soc. Am. 1971, 49, 467–477. [Google Scholar] [CrossRef]
- Treutwein, B. Adaptive psychophysical procedures. Vis. Res. 1995, 35, 2503–2522. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Bühner, M.; Ziegler, M. Statistik für Psychologen und Sozialwissenschaftler; Pearson Studium: München, Germany, 2009; Volume 1, ISBN 978-3-8273-7274-1. [Google Scholar]
- Stamm, M.; Altonsoy, E.; Merchel, S. Frequenzwahrnehmung von Ganzkörperschwingungen im Vergleich zur auditiven Wahrenhmung I. In Proceedings of the DAGA 2010—36th German Annual Conference on Acoustics, Berlin, Germany, 18 March 2010; pp. 868–876. [Google Scholar]
- Merchel, S.; Leppin, A.; Altinsoy, E. Multisensorische Interaktion im Fahrzeug: Audio-Taktile Intensitätswahrnehmung. In Proceedings of the DAGA 2010—36th German Annual Conference on Acoustics, Berlin, Germany, 18 March 2010; pp. 871–872. [Google Scholar]
- Valko, Y.; Lewis, R.F.; Priesol, A.J.; Merfeld, D.M. Vestibular labyrinth contributions to human whole-body motion discrimination. J. Neurosci. 2012, 32, 13537–13542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gescheider, A.; Bolanowski, S.; Hardick, K. The frequency selectivity of information-processing channels in the tactile sensory system. Somatosens. Mot. Res. 2001, 18, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Gescheider, G.A.; Bolanowski, S.J.; Pope, J.V.; Verrillo, R.T. A four-channel analysis of the tactile sensitivity of the fingertip: Frequency selectivity, spatial summation, and temporal summation. Somatosens. Mot. Res. 2002, 19, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Lenhard, W.; Lenhard, A. Berechnung von Effektstärken. Psychometrica: Dettelbach, Germany, 2016. Available online: https://www.psychometrica.de (accessed on 1 February 2020). [CrossRef]
- Entrekin, R.; Suggs, C.W.; Abrams, C.F. Differential Vibration of the Feet and Trunk of Humans. Proc. Sixth Congr. Int. Ergon. Assoc. 1976, 20, 61–65. [Google Scholar] [CrossRef]
- Schmidt, R.F.; Lang, F.; Heckmann, M. Physiologie des Menschen, 31st ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
Publication | [9] | [10,11,12] | [13] | [14] | [15] |
---|---|---|---|---|---|
Year | 2000 | from 2001 | 2001 | 2003 | 2010 |
Frequency | 5, 20 Hz | 4–80 Hz | 12.5–80 Hz | 4–80 Hz | 2.5–315 Hz |
Amplitude | 0.1, 0.5 m/s² | 0.063 m/s² (96 dB) | 0.1 m/s² (100 dB) | 0.7 m/s² | 0.05, 0.2, 0.8 m/s² |
Inquiry technique | 2 AFC 1 up–3 down | 3 AFC 1 up–2 down | 3 AFC 1 up–2 down | method of limits | 2 IFC 1 up–3 down |
Convergence | 79.4% | 70.7% | 70.7% | 50.0% | 79.4% |
Increment step | 2.9% 0.25 dB | 5.9% 0.5 dB | 5.9% 0.5 dB | 2.9% 0.25 dB | 2.9% 0.25 dB |
Test subjects | 12 | 8–16 | 10 | 16 | 12 |
Result | 8.1–12.3% | ~19% | ~20% | 5.2–6.5% | 9.5–20.3% |
No. | f Hz | Paired Comparison m/s² | Statistical Power | Significance padj | Effect Size d | Interpretation acc. to Cohen [20] |
---|---|---|---|---|---|---|
1 | 1.3 | 0.2 ↔ 0.5 | >0.8 | <0.01 | >1.0 | Large |
2 | 6.0 | 0.2 ↔ 0.5 | <0.8 | >0.05 | - | - |
3 | 6.0 | 0.5 ↔ 1.2 | <0.8 | >0.05 | - | - |
4 | 6.0 | 0.2 ↔ 1.2 | <0.8 | <0.05 | >0.8 | Large |
No. | a m/s² | Paired Comparison Hz | Statistical Power | Significance padj | Effect Size d | Interpretation acc. to Cohen [20] |
---|---|---|---|---|---|---|
5 | 0.2 | 1.3 ↔ 6.0 | <0.8 | <0.05 | >1.0 | Large |
6 | 0.5 | 1.3 ↔ 6.0 | <0.8 | >0.05 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Festa, M.; Durm, T.; Lünebach, M.; Gauterin, F. Difference Thresholds for the Perception of Sinusoidal Vertical Stimuli of Whole-Body Vibrations in Ranges of Amplitude and Frequency Relevant to Ride Comfort. Vibration 2020, 3, 116-131. https://doi.org/10.3390/vibration3020010
Festa M, Durm T, Lünebach M, Gauterin F. Difference Thresholds for the Perception of Sinusoidal Vertical Stimuli of Whole-Body Vibrations in Ranges of Amplitude and Frequency Relevant to Ride Comfort. Vibration. 2020; 3(2):116-131. https://doi.org/10.3390/vibration3020010
Chicago/Turabian StyleFesta, Maurizio, Tiemo Durm, Mark Lünebach, and Frank Gauterin. 2020. "Difference Thresholds for the Perception of Sinusoidal Vertical Stimuli of Whole-Body Vibrations in Ranges of Amplitude and Frequency Relevant to Ride Comfort" Vibration 3, no. 2: 116-131. https://doi.org/10.3390/vibration3020010
APA StyleFesta, M., Durm, T., Lünebach, M., & Gauterin, F. (2020). Difference Thresholds for the Perception of Sinusoidal Vertical Stimuli of Whole-Body Vibrations in Ranges of Amplitude and Frequency Relevant to Ride Comfort. Vibration, 3(2), 116-131. https://doi.org/10.3390/vibration3020010