# Experimental Characterization of Friction in a Negative Stiffness Nonlinear Oscillator

^{*}

## Abstract

**:**

## 1. Introduction

## 2. A Negative Stiffness Oscillator

## 3. Experimental Nonlinear Characterization and Equation of Motion

#### 3.1. Identification of the Restoring Force

#### 3.2. Characterization of the Friction Force

- A dynamical damping friction term ${f}_{d}\left(z\right)$, with a Coulomb-like function having a transition velocity ${v}_{t}$;

- A static friction term ${f}_{s}\left(z\right)$ to account for the stiction force and the Stribeck effect;

- A linear viscous damping term $c\dot{z}$, to account for possible viscous forces generated by the lubricated slider.

## 4. Optimization-Based Identification Strategy

- The external forcing term is periodic, and the response is expected to be periodic as well (excluding the chance of chaotic motion);

- The evolution of the dissipated energy with the input amplitude is directly correlated with the dissipation functional form, i.e., the damping force $\mathcal{D}$;

- It depends both on the response amplitude and the phase with the forcing term.

#### 4.1. Experimental Estimation of the Energy Dissipated per Cycle (EDC)

#### 4.2. Numerical Computation via Harmonic Balance Method with Amplitude Continuation

#### Illustrative Example

## 5. Results and Discussion

#### 5.1. Sensitivity Analysis

#### 5.2. Nonlinear Amplitude Response Curves

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Worden, K.; Wong, C.X.; Parlitz, U.; Hornstein, A.; Engster, D.; Tjahjowidodo, T.; Al-Bender, F.; Rizos, D.D.; Fassois, S.D. Identification of pre-sliding and sliding friction dynamics: Grey box and black-box models. Mech. Syst. Signal Process.
**2007**, 21, 514–534. [Google Scholar] [CrossRef] - Berger, E.J. Friction modeling for dynamic system simulation. Appl. Mech. Rev.
**2002**, 55, 535–577. [Google Scholar] [CrossRef] [Green Version] - Armstrong-Hélouvry, B.; Dupont, P.; De Wit, C.C. A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica
**1994**, 30, 1083–1138. [Google Scholar] [CrossRef] - Swevers, J.; Al-Bender, F.; Ganseman, C.G.; Prajogo, T. An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans. Automat. Contr.
**2000**, 45, 675–686. [Google Scholar] [CrossRef] - Al-Bender, F. Fundamentals of friction modeling. Proc. ASPE Spring Top. Meet. Control Precis. Syst. (ASPE 2010).
**2010**, 48, 117–122. [Google Scholar] - Coulomb, C.A. Théorie des Machines Simples, en Ayant Égard au Frottement de Leurs Parties, et a la Roideur des Cordages, Nouv. éd., à Laquelle on a Ajouté les Mémoires du Même Auteur; Bachelier: Paris, France, 1821. [Google Scholar]
- Kerschen, G.; Worden, K.; Vakakis, A.F.; Golinval, J.C. Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process.
**2006**, 20, 505–592. [Google Scholar] [CrossRef] [Green Version] - Noël, J.P.; Kerschen, G. Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process.
**2017**, 83, 2–35. [Google Scholar] [CrossRef] - Rizos, D.D.; Fassois, S.D. Friction identification based upon the LuGre and Maxwell slip models. IFAC Proc. Vol.
**2005**, 38, 548–553. [Google Scholar] [CrossRef] - De Wit, C.C.; Lischinsky, P.; Åström, K.J.; Olsson, H. A new model for control of systems with friction. IEEE Trans. Automat. Contr.
**1995**, 40, 419–425. [Google Scholar] [CrossRef] [Green Version] - Lampaert, V.; Swevers, J.; Al-Bender, F. Modification of the Leuven integrated friction model structure. IEEE Trans. Automat. Contr.
**2002**, 47, 683–687. [Google Scholar] [CrossRef] [Green Version] - Wang, X.; Lin, S.; Wang, S. Dynamic friction parameter identification method with LuGre model for Direct-Drive Rotary torque motor. Math. Probl. Eng.
**2016**, 2016. [Google Scholar] [CrossRef] [Green Version] - Noël, J.P.; Esfahani, A.F.; Kerschen, G.; Schoukens, J. A nonlinear state-space approach to hysteresis identification. Mech. Syst. Signal Process.
**2017**, 84, 171–184. [Google Scholar] [CrossRef] [Green Version] - Dossogne, T.; Noël, J.P.; Grappasonni, C.; Kerschen, G.; Peeters, B.; Debille, J.; Vaes, M.; Schoukens, J. Nonlinear ground vibration identification of an F-16 aircraft-Part II: Understanding nonlinear behaviour in aerospace structures using sine-sweep testing. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (IFASD 2015), Saint Petersburg, Russia, 28 June–2 Juny 2015; pp. 1–19. [Google Scholar]
- Masri, S.F.; Caughey, T.K. A nonparametric identification technique for nonlinear dynamic problems. J. Appl. Mech. Trans. ASME
**1979**, 46, 433–447. [Google Scholar] [CrossRef] - Worden, K.; Tomlinson, G.R. Nonlinearity in Structural Dynamics; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9780429138331. [Google Scholar]
- Petrov, E.P.; Ewins, D.J. Analytical formulation of friction interface elements for analysis of nonlinear multi-harmonic vibrations of bladed disks. J. Turbomach.
**2003**, 125, 364–371. [Google Scholar] [CrossRef] - Maria, C.; Zucca, S. Modelling friction contacts in structural dynamics and its application to turbine bladed disks. Numer. Anal. Theory Appl.
**2011**. [Google Scholar] [CrossRef] [Green Version] - Charleux, D.; Gibert, C.; Thouverez, F.; Dupeux, J. Numerical and experimental study of friction damping blade attachments of rotating bladed disks. Int. J. Rotating Mach.
**2006**, 2006, 1–13. [Google Scholar] [CrossRef] [Green Version] - Claeys, M.; Sinou, J.J.; Lambelin, J.P.; Todeschini, R. Modal interactions due to friction in the nonlinear vibration response of the “Harmony” test structure: Experiments and simulations. J. Sound Vib.
**2016**, 376, 131–148. [Google Scholar] [CrossRef] - Ahmadian, H.; Jalali, H.; Pourahmadian, F. Nonlinear model identification of a frictional contact support. Mech. Syst. Signal Process.
**2010**, 24, 2844–2854. [Google Scholar] [CrossRef] - Sorrentino, S.; Anastasio, D.; Fasana, A.; Marchesiello, S. Distributed parameter and finite element models for wave propagation in railway contact lines. J. Sound Vib.
**2017**, 410, 1–18. [Google Scholar] [CrossRef] - Anastasio, D.; Fasana, A.; Garibaldi, L.; Marchesiello, S. Analytical investigation of railway overhead contact wire dynamics and comparison with experimental results. Mech. Syst. Signal Process.
**2019**, 116, 277–292. [Google Scholar] [CrossRef] - Jordan, D.; Smith, P. Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers; Oxford University Press: Oxford, UK, 2007; ISBN 0199208255. [Google Scholar]
- Moon, F.C.; Holmes, P.J. A magnetoelastic strange attractor. J. Sound Vib.
**1979**, 65, 275–296. [Google Scholar] [CrossRef] - Kovacic, I.; Brennan, M.J. The Duffing Equation: Nonlinear Oscillators and their Behaviour; Kovacic, I., Brennan, M.J., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2011; ISBN 9780470715499. [Google Scholar]
- Anastasio, D.; Fasana, A.; Garibaldi, L.; Marchesiello, S. Nonlinear dynamics of a duffing-like negative stiffness oscillator: Modeling and experimental characterization. Shock Vib.
**2020**, 2020, 1–13. [Google Scholar] [CrossRef] - Marchesiello, S.; Garibaldi, L. A time domain approach for identifying nonlinear vibrating structures by subspace methods. Mech. Syst. Signal Process.
**2008**, 22, 81–101. [Google Scholar] [CrossRef] - Detroux, T.; Renson, L.; Masset, L.; Kerschen, G. The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Methods Appl. Mech. Eng.
**2015**, 296, 18–38. [Google Scholar] [CrossRef] [Green Version] - Von Groll, G.; Ewins, D.J. The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib.
**2001**, 241, 223–233. [Google Scholar] [CrossRef] [Green Version] - Xie, L.; Baguet, S.; Prabel, B.; Dufour, R. Bifurcation tracking by harmonic balance method for performance tuning of nonlinear dynamical systems. Mech. Syst. Signal Process.
**2017**, 88, 445–461. [Google Scholar] [CrossRef] [Green Version] - Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons, Inc.: Chichester, UK, 2001; ISBN 978-0-471-87339-6. [Google Scholar]
- Brown, P.; McPhee, J. A continuous velocity-based friction model for dynamics and control with physically meaningful parameters. J. Comput. Nonlinear Dyn.
**2016**, 11, 1–6. [Google Scholar] [CrossRef] - Newmark, N.M. A method of computation for structural dynamics. J. Eng. Mech. Div.
**1959**, 85, 1235–1264. [Google Scholar]

**Figure 2.**Qualitative representation of the potential $\mathcal{U}\left(z\right)$. Red dots: equilibrium positions.

**Figure 3.**Photos of the experimental setup. (

**a**) Negative equilibrium position ${z}_{-}^{*}$; (

**b**) positive equilibrium position ${z}_{+}^{*}$.

**Figure 4.**Measured cross-well oscillations under random excitation in [27].

**Figure 5.**Experimental restoring surface from [27] with cross-well random excitation in (

**a**); experimental restoring force (blue dots, ${\u03f5}_{s}=0.1\%$ and identified restoring force (red line) in (

**b**); experimental damping forces around ${z}_{-}^{*}$ (green dots, ${\u03f5}_{d}=0.1\%$) and ${z}_{+}^{*}$ (yellow dots, ${\u03f5}_{d}=0.1\%$) in (

**c**).

**Figure 6.**Stepped sine tests. Oscillations around the positive equilibrium in (

**a**) and around the negative equilibrium in (

**b**).

**Figure 7.**Experimental restoring surface with stepped sine excitations in (

**a**); experimental restoring force (blue dots, ϵ

_{s}= 0.1%) and identified restoring force (red line) in (

**b**); experimental damping forces around ${z}_{-}^{*}$(green dots, ${\u03f5}_{d}=0.1\%$) and ${z}_{+}^{*}$ (yellow dots, ${\u03f5}_{d}=0.1\%$) in (

**c**).

**Figure 8.**Variation in the experimental damping force across the position of the moving mass, $\left|z-\tilde{z}\right|<{\u03f5}_{d}$ with ${\u03f5}_{d}=0.1\%$.

**Figure 9.**Energy dissipated per cycle in (

**a**) with excitation amplitude of 1.3 N. Blue: oscillations around the positive equilibrium position; orange: oscillations around the negative equilibrium position. Corresponding response-input plots in (

**b**) and (

**c**) with highlighted areas.

**Figure 10.**Experimental estimation of the dissipated energy per cycle. Blue line: oscillations around ${z}_{+}^{*}$; orange line: oscillations around ${z}_{-}^{*}$. Bars represent the quantity ${S}_{k}^{mes}\pm 3{\sigma}_{k}^{mes}$.

**Figure 11.**Harmonic balance method (HBM) with amplitude continuation, illustrative example. Dashed lines represent unstable paths. Response amplitude in (

**a**); energy dissipated per cycle (EDC) in (

**b**); normalized harmonic coefficients in (

**c**).

**Figure 12.**Comparison between the HBM and numerical integration, illustrative example. Blue line: numerical integration with amplitude sweep down sine excitation; orange line: numerical integration with amplitude sweep up sine excitation; black line: the HBM with amplitude continuation.

**Figure 15.**Energy dissipated per cycle. Continuous lines: experimental estimations ${S}^{mes}\pm 3{\sigma}^{mes}$; dashed-dotted lines: final model predictions. Blue line: oscillations around ${z}_{+}^{*}$; orange line: oscillations around ${z}_{-}^{*}$.

**Figure 16.**Sensitivity analysis on the parameters of the identification. Dashed-dotted red line: reference EDC with the identified values. Blue lines: EDCs corresponding to a 20%, 50%, 70%, 120% and 150% variation of the selected parameter.

**Figure 17.**The HBM with amplitude continuation, final model. Response amplitude in (

**a**); normalized harmonic coefficients in (

**b**).

**Figure 18.**Bifurcation map of the system in the range 0.1–3.7 N. Black dots: experimental observations; red line: nonlinear amplitude response curve with the HBM.

k_{3} (N/m^{3}) | k_{2} (N/m^{2}) | k_{1} (N/m) | k_{0} (N) |
---|---|---|---|

7.35 · 10^{5} | 1.56 · 10^{3} | 550 | 2.4 |

$\mathit{m}\left(\mathbf{k}\mathbf{g}\right)$ | $\mathit{k}\left(\mathbf{N}/\mathbf{m}\right)$ | $\mathit{c}\left(\mathbf{N}\mathbf{s}/\mathbf{m}\right)$ | ${\mathit{f}}_{\mathit{d}}\left(\mathbf{N}\right)$ | ${\mathbf{k}}_{\mathit{s}}$ | ${\mathit{v}}_{\mathit{t}}\left(\mathbf{m}/\mathbf{s}\right)$ |
---|---|---|---|---|---|

1.3 | 800 | 1 | 1 | 1.2 | 10^{−2} |

${\mathit{f}}_{\mathit{d}}\left({\mathit{z}}_{-}^{*}\right)\left(\mathbf{N}\right)\text{}$ | ${\mathit{f}}_{\mathit{d}}\left(0\right)\left(\mathbf{N}\right)$ | ${\mathit{f}}_{\mathit{d}}\left({\mathit{z}}_{+}^{*}\right)\left(\mathbf{N}\right)\text{}$ | ${\mathit{k}}_{\mathit{s}}\text{}$ | $\mathit{c}\left(\mathbf{N}\mathbf{s}/\mathbf{m}\right)\text{}$ | ${\mathit{v}}_{\mathit{t}}\left(\mathbf{m}/\mathbf{s}\right)\text{}$ |
---|---|---|---|---|---|

$0.33$ | $0.67$ | $0.66$ | $1.07$ | $2.02$ | $1.5\cdot {10}^{-2}$ |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Anastasio, D.; Marchesiello, S.
Experimental Characterization of Friction in a Negative Stiffness Nonlinear Oscillator. *Vibration* **2020**, *3*, 132-148.
https://doi.org/10.3390/vibration3020011

**AMA Style**

Anastasio D, Marchesiello S.
Experimental Characterization of Friction in a Negative Stiffness Nonlinear Oscillator. *Vibration*. 2020; 3(2):132-148.
https://doi.org/10.3390/vibration3020011

**Chicago/Turabian Style**

Anastasio, Dario, and Stefano Marchesiello.
2020. "Experimental Characterization of Friction in a Negative Stiffness Nonlinear Oscillator" *Vibration* 3, no. 2: 132-148.
https://doi.org/10.3390/vibration3020011