# Review of Pedestrian Load Models for Vibration Serviceability Assessment of Floor Structures

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Background

#### 1.2. Key Problems

## 2. Characteristics of Vibration in Floors

#### 2.1. Vibration Source (Input)

#### 2.2. Transmission Path (System)

#### 2.3. Receiver (Output)

## 3. Human Induced Loading

#### 3.1. Walking Parameters

#### 3.1.1. Spatio-Temporal Gait Parameters

#### 3.1.2. Controlled Walking vs. Free Walking

#### 3.1.3. Subject Variability

#### 3.2. Walking Models

#### 3.2.1. Deterministic Walking Models

#### 3.2.2. Probabilistic Walking Models for Individual Pedestrians

#### 3.2.3. Response Spectrum in Walking Models

#### 3.3. Statistical Modelling Approaches for Multiple Pedestrians

#### 3.4. Walking Path (Route of Pedestrian)

## 4. Contemporary Design Guidelines and Codes of Practice

## 5. Probabilistic Response Distribution

## 6. Pedestrian Monitoring Techniques

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Pavic, A.; Reynolds, P.; Waldron, P.; Bennett, K.J. Critical review of guidelines for checking vibration serviceability of post-tensioned concrete floors. Cem. Concr. Compos.
**2001**, 23, 21–31. [Google Scholar] [CrossRef] - Pavic, A.; Reynolds, P. Vibration serviceability of long-span concrete building floors: Part 1—Review of background information. Shock Vib. Dig.
**2002**, 34, 191–211. [Google Scholar] - Pavic, A.; Reynolds, P. Vibration serviceability of long-span concrete building floors: Part 2—Review of mathematical modelling approaches. Shock Vib. Dig.
**2002**, 34, 279–297. [Google Scholar] - Hicks, S.; Devine, P. Vibration characteristics of modern composite floor systems. In Composite Construction in Steel and Concrete V; ASCE: Reston, VA, USA, 2006; pp. 247–259. [Google Scholar] [CrossRef]
- Nguyen, H.A.U. Walking Induced Floor Vibration Design and Control. Ph.D. Thesis, Swinburne University of Technology, Melbourne, VIC, Australia, 2013. [Google Scholar]
- Živanović, S.; Pavic, A.; Reynolds, P. Vibration serviceability of footbridges under human-induced excitation: A literature review. J. Sound Vib.
**2005**, 279, 1–74. [Google Scholar] [CrossRef] - Kerr, S.C. Human Induced Loading on Staircases. Ph.D. Thesis, University College London, London, UK, 1998. [Google Scholar]
- Davis, B.; Avci, O. Simplified vibration serviceability evaluation of slender monumental stairs. J. Struct. Eng.
**2015**, 141, 1–9. [Google Scholar] [CrossRef] - Jones, C.; Reynolds, P.; Pavic, A. Vibration serviceability of stadia structures subjected to dynamic crowd loads: A literature review. J. Sound Vib.
**2011**, 330, 1531–1566. [Google Scholar] [CrossRef] - Catbas, F.; Celik, O.; Avci, O.; Abdeljaber, O.; Gul, M.; Do, T. Sensing and monitoring in stadium structures: A review recent advances and a forward look. Front. Built Environ.
**2017**, 3, 1–18. [Google Scholar] [CrossRef] - Mouring, S.E.; Ellingwood, B.R. Guidelines to minimise floor vibrations from building occupants. J. Struct. Eng.
**1994**, 120, 507–526. [Google Scholar] [CrossRef] - Zhou, X.; Li, J.; Liu, J. Vibration of prestressed cable RC truss floor system due to human activity. J. Struct. Eng.
**2015**, 142, 1–10. [Google Scholar] [CrossRef] - Brownjohn, J.; Middleton, C. Procedures for vibration serviceability assessment of high-frequency floors. Eng. Struct.
**2008**, 30, 1548–1559. [Google Scholar] [CrossRef] [Green Version] - Bhargava, A.; Al-Smadi, Y.; Avci, O. Vibrations assessment of a hospital floor for a magnetic resonance imaging unit (MRI) replacement. In Proceedings of the Structures Congress, Pittsburgh, PA, USA, 2–4 May 2013; ASCE: Reston, VA, USA, 2013; pp. 2433–2444. [Google Scholar] [CrossRef]
- Ebrahimpour, A.; Sack, R.L. A review of vibration serviceability criteria for floor structures. Comput. Struct.
**2005**, 83, 2488–2494. [Google Scholar] [CrossRef] - Avci, O. Retrofitting steel joist supported footbridges for improved vibration response. In Proceedings of the Structures Congress, Chicago, IL, USA, 29–31 March 2012; ASCE: Reston, VA, USA, 2012; pp. 460–470. [Google Scholar] [CrossRef]
- Murray, T.M.; Allen, D.E.; Ungar, E.E.; Davis, D.B. Vibrations of Steel-Framed Structural Systems Due to Human Activity; American Institute of Steel Construction (AISC): Chicago, IL, USA, 2016. [Google Scholar]
- Smith, A.; Hicks, S.; Devine, P. Design of Floors for Vibration: A New Approach, 2nd ed.; Steel Construction Institute (SCI): Berkshire, UK, 2009. [Google Scholar]
- RFCS. Human Induced Vibrations of Steel Structures (HiVoSS)—Vibration Design of Floors: Background Document; European Comission-RFCS: Brussels, Belgium, 2007. [Google Scholar]
- Osborne, K.P.; Ellis, B. Vibration design and testing of a long-span lightweight floor. Struct. Eng.
**1990**, 68, 181–186. [Google Scholar] - Chen, Y.; Aswad, A. Vibration characteristics of double tee building floors. PCI J.
**1994**, 39, 84–95. [Google Scholar] [CrossRef] - Chen, Y. Finite element analysis for walking vibration problems for composite precast building floors using ADINA: modeling, simulation and comparison. Comput. Struct.
**1999**, 72, 109–126. [Google Scholar] [CrossRef] - Hanagan, L.M.; Raebel, C.H.; Trethewey, M.W. Dynamic measurements of in-place steel floors to assess vibration performance. J. Perform. Constr. Facil.
**2003**, 17, 126–135. [Google Scholar] [CrossRef] - Barrett, A.; Avci, O.; Setareh, M.; Murray, T. Observations from vibration testing of in-situ structures. In Proceedings of the Structures Congress, St. Louis, MO, USA, 18–21 May 2006; ASCE: Reston, VA, USA, 2006; pp. 1–10. [Google Scholar] [CrossRef]
- Toratti, T.; Talja, A. Classification of human induced floor vibrations. Build. Acoust.
**2006**, 13, 211–221. [Google Scholar] [CrossRef] - Pavic, A.; Willford, M. Vibration Serviceability of Post-Tensioned Concrete Floors, 2nd ed.; Concrete Society: Slough, UK, 2005. [Google Scholar]
- Willford, M.; Young, P. A Design Guide for Footfall Induced Vibration of Structures; Concrete Centre (CC): Surry, UK, 2006. [Google Scholar]
- Fanella, D.A.; Mota, M. Design Guide for Vibrations of Reinforced Concrete Floor Systems; Concrete Reinforcing Steel Institute (CRSI): Schaumburg, IL, USA, 2014. [Google Scholar]
- Al-Anbaki, A.F. Footfall Excitation of Higher Modes of Vibration in Low-Frequency Building Floors. Ph.D. Thesis, The University of Exeter, Exeter, UK, 2018. [Google Scholar]
- Muhammad, Z.; Reynolds, P. Vibration serviceability of building floors: Performance evaluation of contemporary design guidelines. J. Perform. Constr. Facil.
**2018**, in press. [Google Scholar] - Živanović, S.; Pavic, A. Probabilistic modeling of walking excitation for building floors. J. Perform. Constr. Facil.
**2009**, 23, 132–143. [Google Scholar] [CrossRef] - Racic, V.; Brownjohn, J.M.W. Stochastic model of near-periodic vertical loads due to humans walking. Adv. Eng. Inform.
**2011**, 25, 259–275. [Google Scholar] [CrossRef] - Zivanović, S. Modelling human actions on lightweight structures: Experimental and numerical developments. MATEC Web Conf.
**2015**, 24, 01005. [Google Scholar] [CrossRef] - Živanović, S. Probability-Based Estimation of Vibration for Pedestrian Structures Due to Walking. Ph.D. Thesis, The University of Sheffield, Sheffield, UK, 2006. [Google Scholar]
- Hudson, E.J.; Reynolds, P. Implications of structural design on the effectiveness of active vibration control of floor structures. Struct. Control Health Monit.
**2014**, 21, 685–704. [Google Scholar] [CrossRef] - Brownjohn, J.; Pavic, A.; Omenzetter, P. A spectral density approach for modelling continuous vertical forces on pedestrian structures due to walking. Can. J. Civ. Eng.
**2004**, 31, 65–77. [Google Scholar] [CrossRef] [Green Version] - Middleton, C.J.; Brownjohn, J.M.W. Response of high frequency floors: A literature review. Eng. Struct.
**2010**, 32, 337–352. [Google Scholar] [CrossRef] - Pavic, A.; Miskovic, Z.; Živanović, S. Modal properties of beam-and-block pre-cast floors. IES J. Part A Civ. Struct. Eng.
**2008**, 1, 171–185. [Google Scholar] [CrossRef] - Willford, M.; Young, P.; Field, C. Improved methodologies for the prediction of footfall-induced vibration. In Proceedings of the SPIE: Buildings for Nanoscale Research and Beyond, San Diego, CA, USA, 31 July–1 August 2005; pp. 1–12. [Google Scholar] [CrossRef]
- Reynolds, P.; Pavic, A. Effects of false floors on vibration serviceability of building floors. II: Response to pedestrian excitation. J. Perform. Constr. Facil.
**2003**, 17, 87–96. [Google Scholar] [CrossRef] - Younis, A.; Avci, O.; Hussein, M.; Davis, B.; Reynolds, P. Dynamic forces induced by a single pedestrian: A literature review. Appl. Mech. Rev.
**2017**, 69, 020802:1–020802:17. [Google Scholar] [CrossRef] - ISO10137. Bases for Tesing O F Structures—Serviceability of Buildings And Walkways Against Vibrations; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- Eriksson, P.E. Vibration of Low-Frequency Floors–Dynamic Forces and Response Prediction. Ph.D. Thesis, Chalmers University of Technology, Goteborg, Sweden, 1994. [Google Scholar]
- Živanović, S.; Pavic, A.; Racic, V. Towards modelling in-service pedestrian loading of floor structures. In Topics on the Dynamics of Civil Structures, Vol. 1: Proceedings of the 30th IMAC, A Conference and Exhibition on Structural Dynamics, Jacksonville, FL, USA, 30 January–2 February 2012; Springer International Publishing: New York, NY, USA, 2012; pp. 85–94. [Google Scholar]
- Avci, O. Amplitude-dependent damping in vibration serviceability: Case of a laboratory footbridge. J. Archit. Eng.
**2016**, 22, 1–15. [Google Scholar] [CrossRef] - Ji, T.; Ellis, B. Floor vibration induced by dance type loads: Theory. Struct. Eng.
**1994**, 72, 37–44. [Google Scholar] [CrossRef] - Hamdan, S.; Hoque, M.N.; Sutan, M. Dynamic property analysis and development of composite concrete floor (CCF) and vibration serviceability: A review. Int. J. Phys. Sci.
**2011**, 6, 7669–7693. [Google Scholar] [CrossRef] - Middleton, C.J. Dynamic Performance of High Frequency Floors. Ph.D. Thesis, The University of Sheffield, Sheffield, UK, 2009. [Google Scholar]
- Reynolds, P.; Pavic, A. Reliability of assessment criteria for office floor vibrations. In Proceedings of the Experimental Vibration Analysis for Civil Engineering Structures (EVACES), Varenna, Italy, 3–5 October 2011; pp. 317–324. [Google Scholar]
- Reynolds, P.; Pavic, A. Reliability of assessment criteria for building floor vibrations under human excitation. In Proceedings of the 50th U.K. Conference on Human Responses to Vibratio, Southampton, UK, 9–10 September 2015. [Google Scholar]
- Muhammad, Z.; Reynolds, P.; Hudson, E. Evaluation of contemporary guidelines for floor vibration serviceability assessment. In Topics on the Dynamics of Civil Structures, Vol. 2: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics, 2017; Springer International Publishing: New York, NY, USA, 2017; pp. 339–346. [Google Scholar] [CrossRef]
- Živanović, S.; Pavic, A. Quantification of dynamic excitation potential of pedestrian population crossing footbridges. Shock Vib.
**2011**, 18, 563–577. [Google Scholar] [CrossRef] - Costa-Neves, L.; da Silva, J.; de Lima, L.; Jordão, S. Multi-storey, multi-bay buildings with composite steel-deck floors under human-induced loads: The human comfort issue. Comput. Struct.
**2014**, 136, 34–46. [Google Scholar] [CrossRef] - Lythgo, N.; Wilson, C.; Galea, M. Basic gait and symmetry measures for primary school-aged children and young adults whilst walking barefoot and with shoes. Gait Posture
**2009**, 30, 502–506. [Google Scholar] [CrossRef] [PubMed] - Lythgo, N.; Wilson, C.; Galea, M. Basic gait and symmetry measures for primary school-aged children and young adults. II: Walking at slow, free and fast speed. Gait Posture
**2011**, 33, 29–35. [Google Scholar] [CrossRef] [PubMed] - Rainer, J.H.; Pernica, G. Vertical dynamic forces from footsteps. Can. Acoust.
**1986**, 14, 12–21. [Google Scholar] - Racic, V.; Pavic, A.; Brownjohn, J.M.W. Experimental identification and analytical modelling of human walking forces: Literature review. J. Sound Vib.
**2009**, 326, 1–49. [Google Scholar] [CrossRef] - Dang, H.V.; Živanović, S. Experimental characterisation of walking locomotion on rigid level surfaces using motion capture system. Eng. Struct.
**2015**, 91, 141–154. [Google Scholar] [CrossRef] - Ellis, B. On the response of long-span floors to walking loads generated by individuals and crowds. Struct. Eng.
**2000**, 10, 17–25. [Google Scholar] - Kerr, S.C.; Bishop, N.W.M. Human induced loading on flexible staircases. Eng. Struct.
**2001**, 23, 37–45. [Google Scholar] [CrossRef] - Pachi, A.; Ji, T. Frequency and velocity of people walking. Struct. Eng.
**2005**, 83, 36–40. [Google Scholar] [CrossRef] - Chen, J.; Xu, R.; Zhang, M. Acceleration response spectrum for predicting floor vibration due to occupant walking. J. Sound Vib.
**2014**, 333, 3564–3579. [Google Scholar] [CrossRef] - Jacobs, N.; Skorecki, J.; Charnley, J. Analysis of the vertical component of force in normal and pathological gait. J. Biomech.
**1972**, 5, 11–34. [Google Scholar] [CrossRef] - Caprani, C.C. Application of the pseudo-excitation method to assessment of walking variability on footbridge vibration. Comput. Struct.
**2014**, 132, 43–54. [Google Scholar] [CrossRef] - Shahabpoor, E.; Pavic, A.; Racic, V. Structural vibration serviceability: New design framework featuring human-structure interaction. Eng. Struct.
**2017**, 136, 295–311. [Google Scholar] [CrossRef] - Živanović, S.; Pavic, A.; Reynolds, P. Probability-based prediction of multi-mode vibration response to walking excitation. Eng. Struct.
**2007**, 29, 942–954. [Google Scholar] [CrossRef] - Piccardo, G.; Tubino, F. Simplified procedures for vibration serviceability analysis of footbridges subjected to realistic walking loads. Comput. Struct.
**2009**, 87, 890–903. [Google Scholar] [CrossRef] - Waarts, P.H.; Duin, F.V. Assessment procedure for floor vibrations due to walking. Heron J.
**2006**, 51, 251–264. [Google Scholar] - Willford, M.R.; Young, P.; Field, C. Predicting footfall-induced vibration: Part 1. Proc. Inst. Civ. Eng. Struct. Build.
**2007**, 160, 65–72. [Google Scholar] [CrossRef] - Setareh, M. Office floor vibrations: Evaluation and assessment. Proc. Inst. Civ. Eng. Struct. Build.
**2014**, 167, 187–199. [Google Scholar] [CrossRef] - Rainer, J.H.; Pernica, G.; Allen, D.E. Dynamic loading and response of footbridges. Can. J. Civ. Eng.
**1988**, 15, 66–71. [Google Scholar] [CrossRef] [Green Version] - Hamming, R.W. Numerical Methods for Scientists and Engineers, 2nd ed.; McGraw Hill: New York, NY, USA, 1973. [Google Scholar]
- Alexander, R.M.; Jayes, A. Fourier analysis of forces exerted in walking and running. J. Biomech.
**1980**, 13, 383–390. [Google Scholar] [CrossRef] - Blanchard, J.; Davies, B.L.; Smith, J. Design criteria and analysis for dynamic loading of footbridges. In Proceeding of the Symposium on Dynamic Behaviour of Bridges, Transport and Road Research Laboratory, Crowthorne, Berkshire, UK, 19 May 1977; pp. 1–11. [Google Scholar]
- Murray, T.M.; Allen, G. Floor Vibrations: A New Design Approach; IABSE: Göteborg, Sweden, 1993; pp. 119–124. [Google Scholar] [CrossRef]
- Bachmann, H.; Ammann, W.J.; Deischl, F.; Eisenmann, J.; Floegl, I.; Hirsch, G.H.; Klein, G.K.; Lande, G.J.; Mahrenholtz, O.; Natke, H.G.; et al. Vibration Problems in Structures: Practical Guideline; Report; Birkhäuser Verlag: Zürich, Switzerland, 1995. [Google Scholar] [CrossRef]
- Obata, T.; Miyamori, Y. Identification of a human walking force model based on dynamic monitoring data from pedestrian bridges. Comput. Struct.
**2006**, 84, 541–548. [Google Scholar] [CrossRef] - Bachmann, H.; Ammann, W. Vibrations in Structures Induced by Man and Machines, 2nd ed.; International Association for Bridge and Structural Engineering: Zürich, Switzerland, 1987. [Google Scholar]
- Brownjohn, J.; Racic, V.; Chen, J. Universal response spectrum procedure for predicting walking-induced floor vibration. Mech. Syst. Signal Process.
**2016**, 71, 741–755. [Google Scholar] [CrossRef] - Krenk, S. Dynamic response to pedestrian loads with statistical frequency distribution. J. Eng. Mech.
**2012**, 138, 1275–1281. [Google Scholar] [CrossRef] - Ohlsson, S.V. Floor Vibrations and Human Discomfort. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 1982. [Google Scholar]
- Ebrahimpour, A.; Sack, R.L. Modeling dynamic occupant loads. J. Struct. Eng.
**1989**, 115, 1476–1496. [Google Scholar] [CrossRef] - Ebrahimpour, A.; Hamam, A.; Sack, R.L.; Patten, W.N. Measuring and modeling dynamic loads imposed by moving crowds. J. Struct. Eng.
**1996**, 122, 1468–1474. [Google Scholar] [CrossRef] - Piccardo, G.; Tubino, F. Equivalent spectral model and maximum dynamic response for the serviceability analysis of footbridges. Eng. Struct.
**2012**, 40, 445–456. [Google Scholar] [CrossRef] - Pedersen, L.; Frier, C. Sensitivity of footbridge vibrations to stochastic walking parameters. J. Sound Vib.
**2010**, 329, 2683–2701. [Google Scholar] [CrossRef] - Bocian, M.; MaCdonald, J.H.G.; Burn, J.F. Biomechanically inspired modeling of pedestrian-induced vertical self-excited forces. J. Bridge Eng.
**2013**, 18, 1336–1346. [Google Scholar] [CrossRef] - Hicks, S. Vibration characteristics of steel concrete composite floor systems. Prog. Struct. Eng. Mater.
**2004**, 6, 21–38. [Google Scholar] [CrossRef] - Maraveas, C.; Fasoulakis, Z.C.; Tsavdaridis, K.D. A review of human induced vibrations on footbridges. Am. J. Eng. Appl. Sci.
**2015**, 8, 422–433. [Google Scholar] [CrossRef] - Mashaly, E.S.; Ebrahim, T.M.; Abou-Elfath, H.; Ebrahim, O.A. Evaluating the vertical vibration response of footbridges using a response spectrum approach. Alex. Eng. J.
**2013**, 52, 419–424. [Google Scholar] [CrossRef] - Georgakis, C.; Ingolfsson, E.T. Vertical footbridge vibrations: The response spectrum methodology. In Proceedings of the Third International Conference FOOTBRIDGE 2008: Footbridges for Urban Renewal, Porto, Portugal, 2–4 July 2008; pp. 267–275. [Google Scholar]
- Živanović, S.; Pavic, A.; Ingólfsson, E.T. Modelling spatially unrestricted pedestrian traffic on footbridges. J. Struct. Eng.
**2010**, 136, 1296–1308. [Google Scholar] [CrossRef] - Carroll, S.; Owen, J.; Hussein, M. A coupled biomechanical/discrete element crowd model of crowd–bridge dynamic interaction and application to the Clifton Suspension Bridge. Eng. Struct.
**2013**, 49, 58–75. [Google Scholar] [CrossRef] - Venuti, F.; Racic, V.; Corbetta, A. Modelling framework for dynamic interaction between multiple pedestrians and vertical vibrations of footbridges. J. Sound Vib.
**2016**, 379, 245–263. [Google Scholar] [CrossRef] - Sim, J.; Blakeborough, A.; Williams, M.S.; Parkhouse, G. Statistical model of crowd jumping loads. J. Struct. Eng.
**2008**, 134, 1852–1861. [Google Scholar] [CrossRef] - Živanović, S. Benchmark footbridge for vibration serviceability assessment under the vertical component of pedestrian load. J. Struct. Eng.
**2012**, 138, 1193–1202. [Google Scholar] [CrossRef] - Matsumoto, Y.; Nishioka, T.; Shiojiri, H.; Matsuzaki, K. Dynamic Design of Footbridges; IABSE: Moscow, Russia, 1978; pp. 1–15. [Google Scholar]
- Nguyen, T.H.; Gad, E.; Wilson, J.; Lythgo, N.; Haritos, N. Evaluation of footfall induced vibration in building floor. In Proceedings of the Australian Earthquake Engineering Society 2011 Conference, Barossa Valley, South Australia, 18–20 November 2011. [Google Scholar]
- Macal, C.; North, M. Tutorial on agent-based modelling and simulation. J. Simul.
**2010**, 4, 151–162. [Google Scholar] [CrossRef] [Green Version] - Helbing, D.; Molnar, P. Social force model for pedestrian dynamics. Phys. Rev.
**1995**, 51, 4282–4287. [Google Scholar] [CrossRef] - Farina, F.; Fontanelli, D.; Garulli, A.; Giannitrapani, A.; Prattichizzo, D. Walking ahead: The headed social force model. PLoS ONE
**2017**, 12, e0169734. [Google Scholar] [CrossRef] - Carroll, S.; Owen, J.; Hussein, M. Modelling crowd bridge dynamic interaction with a discretely defined crowd. Sound Vib.
**2012**, 331, 2685–2709. [Google Scholar] [CrossRef] - Hicks, S.; Smith, A. Design of floor structures against human-induced vibrations. Steel Constr.
**2011**, 4, 114–120. [Google Scholar] [CrossRef] - RFCS. Human Induced Vibrations of Steel Structures (HiVoSS)—Vibration Design of Floors: Guideline; European Comission-RFCS: Brussels, Belgium, 2007. [Google Scholar]
- Feldmann, M.; Heinemeyer, C.; Butz, C.; Caetano, E.; Cunha, A.; Galanti, F.; Goldack, A.; Helcher, O.; Keil, A.; Obiala, R.; et al. Design of Floor Structures for Human Induced Vibrations; Joint Rep EUR 24084 EN; European Commission-JRC: Luxembourg, 2009. [Google Scholar] [CrossRef]
- Sedlacek, G.; Heinemeyer, C.; Butz, C.; Volling, B.; Waarts, P.; Van Duin, F.; Hicks, S.; Devine, P.; Demarco, T. Generalisation of Criteria for Floor Vibrations for Industrial, Office, Residential and Public Building and Gymnastic Halls; Technik Report European 21972 EN; European Commission-JRC: Luxembourg, 2006. [Google Scholar]
- Mohammed, A.; Pavic, A.; Racic, V. Improved model for human induced vibrations of high-frequency floors. Eng. Struct.
**2018**, 168, 950–966. [Google Scholar] [CrossRef] [Green Version] - Fahmy, Y.G.M.; Sidky, A.N.M. An experimental investigation of composite floor vibration due to human activities. A case study. Hous. Build. Natl. Res. Cent. J.
**2012**, 8, 228–238. [Google Scholar] [CrossRef] - Hassan, O.A.B.; Girhammar, U.A. Assessment of footfall-induced vibrations in timber and lightweight composite floors. Int. J. Struct. Stab. Dyn.
**2013**, 13, 1–26. [Google Scholar] [CrossRef] - Clough, R.W.; Penzien, J. Dynamic of Structures, 3rd ed.; Computers and Structures, Inc.: Berkeley, CA, USA, 2003. [Google Scholar]
- Pavic, A.; Reynolds, P.; Prichard, S.; Lovell, P.A. Evaluation of mathematical models for predicting walking-induced vibrations of high-frequency floors. Int. J. Struct. Stab. Dyn.
**2003**, 3, 107–130. [Google Scholar] [CrossRef] - Setareh, M. Vibration serviceability of a building floor structure. II: Vibration evaluation and assessment. J. Perform. Constr. Facil.
**2010**, 24, 508–518. [Google Scholar] [CrossRef] - Ellis, B.R. Serviceability evaluation of floor vibration induced by walking loads. Struct. Eng.
**2001**, 79, 30–36. [Google Scholar] [CrossRef] - Ellis, B. The influence of crowd size on floor vibrations induced by walking. Struct. Eng.
**2003**, 81, 20–27. [Google Scholar] [CrossRef] - Willford, M.R.; Young, P.; Field, C. Predicting footfall-induced vibration: Part 2. Proc. Inst. Civ. Eng. Struct. Build.
**2007**, 160, 73–79. [Google Scholar] [CrossRef] - Setareh, M. Vibration serviceability issues of slender footbridges. J. Bridge Eng.
**2016**, 21, 1–12. [Google Scholar] [CrossRef] - BSI. Guide to Evaluation of Human Exposure to Vibration in Buildings. Part 1: Vibration Sources Other Than Blasting (BS6472-1); BSI: London, UK, 2008. [Google Scholar]
- Pedersen, L. Dynamic model of a structure carrying stationary humans and assessment of its response to walking excitation. In Topics on the Dynamics of Civil Structures: Proceedings of the IMAC-XXIV, A Conference and Exposition on Structural Dynamics, 2007; Springer International Publishing: New York, NY, USA, 2007. [Google Scholar]
- Devin, A.; Fanning, P.J.; Pavic, A. Nonstructural partitions and floor vibration serviceability. J. Archit. Eng.
**2016**, 22, 1–9. [Google Scholar] [CrossRef] - Oasys. GSA v9.0 Structural Design & Analysis Software; Oasys Software: London, UK, 2018. [Google Scholar]
- Autodesk. Autodesk Robot Structural Analysis Professional; Autodesk: San Rafael, CA, USA, 2018. [Google Scholar]
- CSI. SAP2000 v20 Integrated Finite Element Analysis and Design of Structures; Computers and Structures Inc.: Berkely, CA, USA, 2018. [Google Scholar]
- CSI. ETABS v17 Integrated Analysis, Design and Drafting of Building Systems; Computers and Structures Inc.: Berkely, CA, USA, 2018. [Google Scholar]
- Živanović, S.; Racic, V.; El Bahnasy, I.; Pavic, A. Statistical characterisation of parameters defining human walking as observed on an indoor passerelle. In Proceedings of the Experimental Vibration Analysis for Civil Engineering Structures (EVACES), Porto, Portugal, 24–26 October 2007; pp. 219–225. [Google Scholar]
- Racic, V.; Pavic, A.; Brownjohn, J.M.W. Modern facilities for experimental measurement of dynamic loads induced by humans: A literature review. Shock Vib.
**2013**, 20, 53–67. [Google Scholar] [CrossRef] - Van Nimmen, K.; Lombaert, G.; Jonkers, I.; De Roeck, G.; Van Den Broeck, P. Characterisation of walking loads by 3D inertial motion tracking. J. Sound Vib.
**2014**, 333, 5212–5226. [Google Scholar] [CrossRef] - Keogh, J.; Duignan, R.; Caprani, C. Characteristics of pedestrian crowd flow demand for vibration serviceability of footbridges. In Bridge Maintenance, Safety, Management and Life Extension; CRC Press: Boca Raton, FL, USA, 2014; pp. 370–377. [Google Scholar] [CrossRef]
- Zheng, F.; Shao, L.; Racic, V.; Brownjohn, J. Measuring human-induced vibrations of civil engineering structures via vision-based motion tracking. Measurement
**2016**, 83, 44–56. [Google Scholar] [CrossRef] [Green Version] - Fujino, Y.; Pacheco, B.M.; Nakamura, S.; Warnitchai, P. Synchronization of human walking observed during lateral vibration of a congested pedestrian bridge. Earthq. Eng. Struct. Dyn.
**1993**, 22, 741–758. [Google Scholar] [CrossRef] - Kretz, T.; Grünebohm, A.; Kaufman, M.; Mazur, F.; Schreckenberg, M. Experimental study of pedestrian counterflow in a corridor. J. Stat. Mech. Theory Exp.
**2006**, 2006, P10001. [Google Scholar] [CrossRef] - Corbetta, A.; Bruno, L.; Muntean, A.; Toschi, F. High statistics measurements of pedestrian dynamics. In Proceedings of the Conference on Pedestrian and Evacuation Dynamics 2014 (PED2014), Transportation Research Procedia, Delft, The Netherlands, 22–24 October 2014; pp. 96–104. [Google Scholar]
- Brandle, N.; Bauer, D.; Seer, S. Track-based finding of stopping pedestrians—A practical approach for analyzing a public infrastructure. In Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC), Transportation Research Procedia, Toronto, ON, Canada, 17–20 September 2006; pp. 115–120. [Google Scholar]

**Figure 2.**Spatial walking parameters (after [58]). (

**a**) Angle of different parameters with respect to Body Center of Mass (BCoM); (

**b**) Step width and step length in one step cycle.

**Figure 3.**Frequency component of measured walking and deterministic models (after [36]). (

**a**) Fourier amplitude of measured walking; (

**b**) Fourier amplitude of synthetic walking from deterministic models.

**Figure 4.**Response spectrum for floors under walking loading (after [62]).

**Figure 5.**Cumulative distribution of R factors in office floor buildings (after [49]).

**Figure 6.**Spatial distribution of R-factor in a typical office floor (after [35]).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Muhammad, Z.; Reynolds, P.; Avci, O.; Hussein, M.
Review of Pedestrian Load Models for Vibration Serviceability Assessment of Floor Structures. *Vibration* **2019**, *2*, 1-24.
https://doi.org/10.3390/vibration2010001

**AMA Style**

Muhammad Z, Reynolds P, Avci O, Hussein M.
Review of Pedestrian Load Models for Vibration Serviceability Assessment of Floor Structures. *Vibration*. 2019; 2(1):1-24.
https://doi.org/10.3390/vibration2010001

**Chicago/Turabian Style**

Muhammad, Zandy, Paul Reynolds, Onur Avci, and Mohammed Hussein.
2019. "Review of Pedestrian Load Models for Vibration Serviceability Assessment of Floor Structures" *Vibration* 2, no. 1: 1-24.
https://doi.org/10.3390/vibration2010001