A Robust Methodology for the Reconstruction of the Vertical Pedestrian-Induced Load from the Registered Body Motion
Abstract
:1. Introduction
2. Experimental Data
3. Initial Approximation: Newton’s Second Law
4. New Approach: Combining the Experimentally Identified Time-Variant Pacing Rate with a Single-Step Load Model
4.1. Numerical Investigations
4.1.1. Identification of the Time-Variant Pacing Rate
4.1.2. Influence of a Cut-off Frequency at or
4.1.3. Influence of the Single-Step Load Model
- The coefficient on average reduces with 10%,
- The coefficient on average reduces with 5%.
4.2. Application to the Experimentally Registered Body Motion
4.3. Summary
- An experiment is performed where the body motion of the pedestrian is registered, e.g., the acceleration levels close to the BCoM.
- The registered body motion data is preprocessed:
- the data is resampled at at least 500 Hz: Given the accuracy that has to be attained when identifying the time-variant pacing rate (), a resolution in time domain of 0.002 s is recommend. This resolution corresponds to 0.5% of the smallest period of the walking cycle that reasonably can be expected, i.e., corresponding to a step frequency of 2.5 Hz;
- the mean step frequency is estimated as the dominant contribution in the PSD of the registered body motion in the relevant frequency range [1.0–2.5] Hz. A frequency resolution of at least 0.05 Hz is recommended;
- the data is lowpass filtered with a cut-off frequency at .
- The preprocessed data is used to identify the time-variant pacing rate using the method detailed in Section 4.1.1, preferably based on the double-stance peaks. If necessary, apply the appropriate time shift to arrive at an estimate of the actual onset of each step.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BCoM | Body Centre of Mass |
CoM | Centre of Mass |
GRFs | Ground Reaction Forces |
HSI | Human–Structure Interaction |
PSD | Power Spectral Density |
References
- Živanović, S.; Pavić, A.; Reynolds, P. Vibration serviceability of footbridges under human-induced excitation: A literature review. J. Sound Vib. 2005, 279, 1–74. [Google Scholar] [CrossRef] [Green Version]
- Association Française de Génie Civil, Sétra/AFGC. Sétra: Evaluation du Comportement Vibratoire des Passerelles Piétonnes Sous L’action des Piétons (Assessment of Vibrational Behaviour of Footbridges Under Pedestrian Loading); AFGC: Paris, France, 2006. [Google Scholar]
- Heinemeyer, C.; Butz, C.; Keil, A.; Schlaich, M.; Goldack, A.; Lukić, M.; Chabrolin, B.; Lemaire, A.; Martin, P.; Cunha, A.; Caetano, E. Design of Lightweight Footbridges for Human Induced Vibrations—Background Document in Support to the Implementation, Harmonization and Further Development of the Eurocodes; JRC-ECCS 2009; EU Publications: Luxembourg, 2009. [Google Scholar]
- Georgakis, C.T.; Ingólfsson, E. Recent advances in our understanding of vertical and lateral footbridge vibrations. In Proceedings of the 5th International Footbridge Conference, London, UK, 6–18 July 2014. [Google Scholar]
- Venuti, F.; Racic, V.; Corbetta, A. Modelling framework for dynamic interaction between multiple pedestrians and vertical vibrations of footbridges. J. Sound Vib. 2016, 379, 245–263. [Google Scholar] [CrossRef]
- Zang, M.; Georgakis, C.; Chen, J. Biomechanically Excited SMD Model of a Walking Pedestrian. J. Bridge Eng. 2016, 21. [Google Scholar] [CrossRef]
- Shahabpoor, E.; Pavić, A.; Racić, V. Interaction between Walking Humans and Structures in Vertical Direction: A Literature Review. Shock Vib. 2016, 12–17. [Google Scholar] [CrossRef]
- Dang, H.; Živanović, S. Influence of Low-Frequency Vertical Vibration on Walking Locomotion. J. Struct. Eng. 2016. [Google Scholar] [CrossRef]
- Van Nimmen, K.; Lombaert, G.; De Roeck, G.; Van den Broeck, P. The impact of vertical human–structure interaction on the response of footbridges to pedestrian excitation. J. Sound Vib. 2017, 402, 104–121. [Google Scholar] [CrossRef]
- Živanović, S. Benchmark footbridge for vibration serviceability assessment under vertical component of pedestrian load. J. Struct. Eng. 2012, 138, 1193–1202. [Google Scholar] [CrossRef]
- McDonald, M.; Živanović, S. Measuring ground reaction force and quantifying variability in jumping and bobbing actions. J. Struct. Eng. 2017, 143. [Google Scholar] [CrossRef]
- Racić, V.; Brownjohn, J.M.W.; Pavić, A. Reproduction and application of human bouncing and jumping forces from visual marker data. J. Sound Vib. 2010, 329, 3397–3416. [Google Scholar] [CrossRef]
- Carroll, S.P.; Owen, J.S.; Hussein, M.F.M. Reproduction of lateral ground reaction forces from visual marker data and analysis of balance response while walking on a laterally oscillating deck. Eng. Struct. 2013, 49, 1034–1047. [Google Scholar] [CrossRef]
- Van Nimmen, K.; Lombaert, G.; Jonkers, I.; De Roeck, G.; Van den Broeck, P. Characterisation of walking loads by 3D inertial motion tracking. J. Sound Vib. 2014, 333, 5212–5226. [Google Scholar] [CrossRef]
- Toso, M.; Gomes, H.; da Silva, F.; Pimentel, R. Experimentally fitted biodynamic models for pedestrian-structure interaction in walking situations. Mech. Syst. Signal Process. 2015, 72–73, 590–606. [Google Scholar] [CrossRef]
- Bocian, M.; Brownjohn, J.; Racic, V.; Hester, D.; Quattrone, A.; Monnickendam, R. A framework for experimental determination of localised vertical pedestrian forces on full-scale sturctures using wireless attitude and heading reference systems. J. Sound Vib. 2016, 376, 217–243. [Google Scholar] [CrossRef] [Green Version]
- Brownjohn, J.; Bocian, M.; Hester, D.; Quattrone, A.; Hudson, W.; Moore, D.; Goh, S.; Lim, M. Footbridge system identification using wireless inertial measurement units for force and response measurements. J. Sound Vib. 2016, 384, 339–355. [Google Scholar] [CrossRef]
- Bocian, M.; Brownjoh, J.; Racić, V.; Hester, D.; Quattrone, A.; Gilbert, L.; Beasley, R. Time-dependent spectral analysis of interactions within groups of walking pedestrians and vertical structural motion using wavelets. Mech. Syst. Signal Process. 2018, 105, 502–523. [Google Scholar] [CrossRef]
- Brownjoh, J.; Chen, J.; Bocian, M.; Racić, V.; Shahabpoor, E. Using inertial measurement units to identify medio-lateral ground reaction forces due to walking and swaying. J. Sound Vib. 2018, 426, 90–110. [Google Scholar] [CrossRef]
- Dang, H.; Živanović, S. Experimental characterisation of walking locomotion on rigid level surfaces using motion capture system. Eng. Struct. 2015, 91, 141–154. [Google Scholar] [CrossRef]
- Nigg, B.M.; Herzog, W. Biomechanics of the Musculo-Skeletal System, 3rd ed.; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Shahabpoor, E.; Pavic, A.; Brownjohn, J.; Billings, S.; Guo, L.; Bocian, M. Real-life measurement of tri-axial walking ground reaction forces using optimal network of wearable inertial measurement units. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Fan, J.; Nie, J.; Li, Q.; Chen, Y. Crowd-induced random vibration of footbridge and vibration control using multiple tuned mass dampers. J. Sound Vib. 2010, 329, 4068–4092. [Google Scholar] [CrossRef]
- Butz, C. Beutrag zur Berechnung Fussgängerinduzierter Brückenschwingungen—Shaker Verlag (Contribution to the Determination of Pedestrian Induced Bridge Vibrations). Ph.D. Thesis, RWTH Aachen, Aachen, Germany, 2006. [Google Scholar]
- Middleton, C. Dynamic Performance of High Frequency Floors. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2009. [Google Scholar]
- Duysens, J.; Jonkers, I.; Verschueren, S. MALL: Movement & Posture Analysis Laboratory Leuven; Interdepartmental Research Laboratory at the Faculty of Kinisiology and Rehabilitation Sciences: Leuven, Belgium.
- Racić, V.; Pavić, A.; Reynolds, P. Experimental identification and analytical modelling of walking forces: A literature review. J. Sound Vib. 2009, 326, 1–49. [Google Scholar] [CrossRef]
- Paolini, G.; Croce, U.; Riley, P.; Neuwton, F.; Kerrigan, D. Testing of a tri-instrumented-treadmill unit for kinetic analysis of locomotion tasks in static and dynamic loading conditions. Med. Eng. Phys. 2007, 29, 404–411. [Google Scholar] [CrossRef]
- MATLAB. R2015b, The MathWorks Inc.: Natick, MA, USA, 2015.
- Van den Bogert, A.; Read, L.; Nogg, B. A method for inverse dynamic analysis using accelerometry. J. Biomech. 1996, 29, 949–954. [Google Scholar] [CrossRef]
- Liikavainio, T.; Bragge, T.; Hakkarainen, M.; Jurvelin, J.; Karjalainen, P.; Arokoski, J. Reproducibility of loading measurements with skin-mounted accelerometers during walking. Arch. Phys. Med. Rehabil. 2007, 88, 907–915. [Google Scholar] [CrossRef]
- Vicon Motion Systems. Vicon Motion Systems Product Manuals; Vicon Motion Systems: Oxford, UK.
- CODAmotion. Technical Data Sheet; Charnwood Dynamics: Rothley, UK, 2012. [Google Scholar]
- Xsens Technologies B.V. MTw User Manual; Xsens: Enschede, The Netherlands, 2010. [Google Scholar]
- Draper, N.; Smith, H. Applied Regression Analysis; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Denoth, J. Chapter: Load on the locomotor system and modelling. In Biomechanics of Running Shoes; Nigg, B., Ed.; Human Kinetics Publishers: Champaign, IL, USA, 1986; pp. 63–116. [Google Scholar]
- Silva, F.; Pimentel, R. Biodynamic walking model for vibration serviceability of footbridges in vertical direction. In Proceedings of the 8th International Conference on Structural Dynamics of EURODYN, Leuven, Belgium, 4–6 July 2011. [Google Scholar]
- Silva, F.; Brito, H.; Pimentel, R. Modeling of crowd load in vertical direction using biodynamic model of pedestrians crossing footbridges. Can. J. Civ. Eng. 2014, 41, 1196–1204. [Google Scholar] [CrossRef]
- Racić, V.; Pavić, A. Mathematical model to generate near-periodic human jumping force signals. Mech. Syst. Signal Process. 2010, 24, 138–152. [Google Scholar] [CrossRef]
- Young, P. Improved floor vibration prediction methodologies. ARUP Vibration Seminar, 2001. [Google Scholar]
- Willford, M.R.; Field, C.; Young, P. Improved methodologies for the prediction of footfall-induced vibration. In Proceedings of the SPIE 2005, San Diego, CA, USA; pp. 1–15.
- Butz, C.; Feldmann, M.; Heinemeyer, C.; Sedlacek, G. SYNPEX: Advanced Load Models for Synchronous Pedestrian Excitation and Optimised Design Guidelines for Steel Footbridges; Technical Report, Research Fund for Coal and Steel; EU Publications: Luxembourg, 2008. [Google Scholar]
Participant | Sex | Age | Height [m] | Mass [kg] | Considered Treadmill Speeds [m/s] |
---|---|---|---|---|---|
1 | female | 26 | 1.65 | 52 | [0.97, 1.11, 1.25, 1.39, 1.53, 1.67] |
2 | male | 23 | 1.81 | 72 | [1.11, 1.25, 1.39] |
3 | male | 27 | 1.75 | 66 | [1.1, 1.7] |
4 | male | 24 | 1.80 | 72 | [1.0, 1.3, 1.6] |
[-] | [-] | |||||
---|---|---|---|---|---|---|
[Hz] | [-] | m | m | |||
3.5 | 1.68 | 0.78 | 0.861 | 0.942 | 0.903 | 0.973 |
4.0 | 1.75 | 0.76 | 0.857 | 0.955 | 0.893 | 0.981 |
4.5 | 1.85 | 0.76 | 0.864 | 0.962 | 0.896 | 0.986 |
5.0 | 1.92 | 0.76 | 0.869 | 0.959 | 0.900 | 0.982 |
5.5 | 2.00 | 0.74 | 0.863 | 0.962 | 0.890 | 0.982 |
6.0 | 2.06 | 0.74 | 0.872 | 0.963 | 0.896 | 0.981 |
Average | 0.860 | 0.951 | 0.895 | 0.976 |
[%] | [%] | [-] | [-] | |||||
---|---|---|---|---|---|---|---|---|
1.5 | 0.02 | 1.05 | 0 | 0 | 0.988 | 1 | 0.997 | 1 |
1.6 | 0.01 | 1.09 | 0 | 0 | 0.989 | 1 | 0.997 | 1 |
1.7 | 0.02 | 1.02 | 0 | 0 | 0.992 | 1 | 0.998 | 1 |
1.8 | 0.01 | 0.97 | 0 | 0 | 0.994 | 1 | 0.998 | 1 |
1.9 | 0.02 | 1.00 | 0 | 0 | 0.994 | 1 | 0.998 | 1 |
2 | 0.02 | 0.87 | 0 | 0 | 0.995 | 1 | 0.998 | 1 |
2.1 | 0.01 | 1.01 | 0 | 0 | 0.994 | 1 | 0.998 | 1 |
Average | 0.016 | 1.001 | 0 | 0 | 0.992 | 1 | 0.998 | 1 |
Influence of a cut-off frequency at | ||||||||
1.5 | 0.02 | 0.74 | 0.11 | 2.35 | 0.994 | 0.949 | 0.998 | 0.974 |
1.6 | 0.01 | 0.68 | 0.13 | 2.47 | 0.996 | 0.958 | 0.999 | 0.975 |
1.7 | 0.01 | 0.66 | 0.09 | 1.93 | 0.997 | 0.978 | 0.999 | 0.986 |
1.8 | 0.01 | 0.61 | 0.09 | 1.78 | 0.998 | 0.984 | 0.999 | 0.989 |
1.9 | 0.01 | 0.62 | 0.07 | 1.54 | 0.998 | 0.989 | 0.999 | 0.993 |
2 | 0.01 | 0.57 | 0.05 | 1.23 | 0.998 | 0.993 | 0.999 | 0.996 |
2.1 | 0.02 | 0.74 | 0.05 | 1.20 | 0.997 | 0.994 | 0.999 | 0.996 |
Average | 0.01 | 0.66 | 0.08 | 1.79 | 0.999 | 0.98 | 0.999 | 0.990 |
Influence of a cut-off frequency at | ||||||||
1.5 | 0.01 | 0.84 | 0.01 | 0.71 | 0.993 | 0.995 | 0.999 | 0.998 |
1.6 | 0.01 | 0.81 | 0.01 | 0.64 | 0.994 | 0.996 | 0.999 | 0.999 |
1.7 | 0.01 | 0.83 | 0.01 | 0.61 | 0.995 | 0.997 | 0.999 | 0.999 |
1.8 | 0.01 | 0.73 | 0.01 | 0.61 | 0.996 | 0.997 | 0.999 | 0.999 |
1.9 | 0.01 | 0.75 | 0.01 | 0.57 | 0.997 | 0.998 | 0.999 | 0.999 |
2 | 0.02 | 1.10 | 0.01 | 0.55 | 0.993 | 0.998 | 0.998 | 0.999 |
2.1 | 0.02 | 1.03 | 0.01 | 0.51 | 0.994 | 0.998 | 0.999 | 0.999 |
Average | 0.01 | 0.87 | 0.01 | 0.60 | 0.995 | 0.997 | 0.999 | 0.999 |
Influence of the single-step load model | ||||||||
1.5 | = | = | = | = | 0.903 | 0.905 | 0.949 | 0.951 |
1.6 | = | = | = | = | 0.9 | 0.903 | 0.951 | 0.952 |
1.7 | = | = | = | = | 0.919 | 0.92 | 0.954 | 0.955 |
1.8 | = | = | = | = | 0.915 | 0.915 | 0.951 | 0.951 |
1.9 | = | = | = | = | 0.891 | 0.889 | 0.951 | 0.952 |
2 | = | = | = | = | 0.853 | 0.858 | 0.948 | 0.95 |
2.1 | = | = | = | = | 0.859 | 0.857 | 0.955 | 0.956 |
Average | 0.891 | 0.892 | 0.951 | 0.952 |
[%] | [%] | [-] | [-] | ||||||
---|---|---|---|---|---|---|---|---|---|
[Hz] | |||||||||
3.5 | 1.68 | 0.01 | 1.55 | 0.50 | 7.80 | 0.824 | 0.855 | 0.945 | 0.930 |
4 | 1.75 | 0.03 | 1.54 | 0.39 | 7.63 | 0.922 | 0.894 | 0.971 | 0.958 |
4.5 | 1.85 | 0.01 | 1.38 | 0.30 | 5.96 | 0.914 | 0.923 | 0.976 | 0.970 |
5 | 1.92 | 0.00 | 1.20 | 0.18 | 4.15 | 0.943 | 0.954 | 0.982 | 0.980 |
5.5 | 2.00 | 0.01 | 1.44 | 0.13 | 3.41 | 0.966 | 0.963 | 0.990 | 0.988 |
6 | 2.06 | 0.00 | 1.51 | 0.08 | 2.51 | 0.970 | 0.953 | 0.992 | 0.980 |
Average | 0.01 | 1.44 | 0.26 | 5.24 | 0.923 | 0.924 | 0.976 | 0.968 | |
3.5 | 1.68 | = | = | = | = | 0.614 | 0.645 | 0.865 | 0.837 |
4 | 1.75 | = | = | = | = | 0.682 | 0.713 | 0.900 | 0.887 |
4.5 | 1.85 | = | = | = | = | 0.770 | 0.780 | 0.927 | 0.917 |
5 | 1.92 | = | = | = | = | 0.814 | 0.827 | 0.924 | 0.921 |
5.5 | 2.00 | = | = | = | = | 0.847 | 0.843 | 0.922 | 0.919 |
6 | 2.06 | = | = | = | = | 0.846 | 0.828 | 0.905 | 0.912 |
Average | = | = | = | = | 0.762 | 0.773 | 0.907 | 0.899 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Nimmen, K.; Zhao, G.; Seyfarth, A.; Van den Broeck, P. A Robust Methodology for the Reconstruction of the Vertical Pedestrian-Induced Load from the Registered Body Motion. Vibration 2018, 1, 250-268. https://doi.org/10.3390/vibration1020018
Van Nimmen K, Zhao G, Seyfarth A, Van den Broeck P. A Robust Methodology for the Reconstruction of the Vertical Pedestrian-Induced Load from the Registered Body Motion. Vibration. 2018; 1(2):250-268. https://doi.org/10.3390/vibration1020018
Chicago/Turabian StyleVan Nimmen, Katrien, Guoping Zhao, André Seyfarth, and Peter Van den Broeck. 2018. "A Robust Methodology for the Reconstruction of the Vertical Pedestrian-Induced Load from the Registered Body Motion" Vibration 1, no. 2: 250-268. https://doi.org/10.3390/vibration1020018
APA StyleVan Nimmen, K., Zhao, G., Seyfarth, A., & Van den Broeck, P. (2018). A Robust Methodology for the Reconstruction of the Vertical Pedestrian-Induced Load from the Registered Body Motion. Vibration, 1(2), 250-268. https://doi.org/10.3390/vibration1020018