Vibration Suppression and Energy Harvesting with a Non-traditional Vibration Absorber: Transient Responses
Abstract
:1. Introduction
2. Apparatus
3. Optimum Model B for Suppression of Transient Responses
4. Index to Measure the Performance of Energy Harvesting
5. Computer Simulation
5.1. Undamped Primary System
5.2. Damped Primary System
6. Experimental Results
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Den Hartog, J.P. Mechanical Vibrations, 2nd ed.; McGraw-Hill: New York, NY, USA, 1940. [Google Scholar]
- Brock, J.E. A Note on the Damped Vibration Absorber. J. Appl. Mech. 1946, 13, A-284. [Google Scholar]
- Warburton, G.B. Optimum Absorber Parameters for Various Combination of Responses and Excitation Parameters. Earthq. Eng. Struct. Dyn. 1982, 10, 281–401. [Google Scholar] [CrossRef]
- Rana, R.; Soong, T.T. Parametric Study and Simplified Design of Tuned Mass Dampers. Eng. Struct. 1998, 20, 193–204. [Google Scholar] [CrossRef]
- Ren, M.Z. A Variant Design of the Dynamic Vibration Absorber. J. Sound Vib. 2001, 245, 762–770. [Google Scholar] [CrossRef]
- Liu, K.; Liu, J. The Damped Dynamic Vibration Absorbers: Revisited and New Result. J. Sound Vib. 2005, 284, 1181–1189. [Google Scholar] [CrossRef]
- Wong, W.; Cheung, Y. Optimal Design of a Damped Dynamic Vibration Absorber for Vibration Control of Structure Excited by Ground Motion. Eng. Struct. 2008, 30, 282–286. [Google Scholar] [CrossRef]
- Cheung, Y.; Wong, W. H2 Optimization of a Non-traditional Dynamic Vibration Absorber for Vibration Control of Structures under Random Force Excitation. J. Sound Vib. 2011, 330, 1039–1044. [Google Scholar] [CrossRef]
- Cheung, Y.; Wong, W. Design of a Non-traditional Dynamic Vibration Absorber. J. Acoust. Soc. Am. 2009, 126, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Coppola, G. Optimal Design of Damped Dynamic Vibration Absorber for Damped Primary System. Trans. Can. Soc. Mech. Eng. 2010, 34, 119–135. [Google Scholar] [CrossRef]
- Anh, N.D.; Nguyen, N.X. Design of Non-traditional Dynamic Vibration Absorber for Damped Linear Structures. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2014, 228, 45–55. [Google Scholar] [CrossRef]
- Xiang, P.; Nishitani, A. Optimum Design and Application of Non-traditional Tuned Mass Damper toward Seismic Responses Control with Experimental Test Verification. Earthq. Eng. Struct. Dyn. 2015, 44, 2199–2220. [Google Scholar] [CrossRef]
- Lynch, J.P.; Loh, K.J. A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. Shock Vib. Dig. 2006, 38, 91–128. [Google Scholar] [CrossRef]
- Paradiso, J.; Starner, T. Energy Scavenging for Mobile and Wireless Electronics. IEEE Pervasive Comput. 2005, 4, 18–26. [Google Scholar] [CrossRef]
- Beeby, S.P.; Tudor, M.J.; White, N.M. Energy Harvesting Vibration Sources for Microsystems Applications. Meas. Sci. Technol. 2006, 17, R175–R195. [Google Scholar] [CrossRef]
- Sodano, H.A.; Park, G.; Inman, D.J. Estimation of Electric Charge Output for Piezoelectric Energy Harvesting. Strain 2004, 40, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Sodano, H.A.; Inman, D.J.; Park, G. Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries. J. Intell. Mater. Syst. Struct. 2005, 16, 799–807. [Google Scholar] [CrossRef]
- Ng, T.H.; Liao, W.H. Sensitivity Analysis and Energy Harvesting for a Self-powered Piezoelectric Sensor. J. Intell. Mater. Syst. Struct. 2005, 16, 785–797. [Google Scholar] [CrossRef]
- Stephen, N.G. On Energy Harvesting from Ambient Vibration. J. Sound Vib. 2006, 293, 409–425. [Google Scholar] [CrossRef]
- Feenstra, J.; Granstrom, J.; Sodano, H. Energy Harvesting through a Backpack Employing a Mechanically Amplified Piezoelectric Stack. Mech. Syst. Signal Process. 2008, 22, 721–734. [Google Scholar] [CrossRef]
- Shahruz, S.M. Design of Mechanical Band-pass Filters for Energy Scavenging: Multi-degree-of-freedom Models. J. Vib. Control 2008, 14, 753–768. [Google Scholar] [CrossRef]
- Yoon, H.S. Active Vibration Confinement of Flexible Structures Using Piezoceramic Patch Actuators. J. Intell. Mater. Syst. Struct. 2008, 19, 145–155. [Google Scholar] [CrossRef]
- Beeby, S.P.; Torah, R.N.; Tudor, M.J. A Micro Electromagnetic Generator for Vibration Energy Harvesting. J. Micromech. Microeng. 2007, 17, 1257–1265. [Google Scholar] [CrossRef]
- Mann, B.P.; Sims, N.D. On the Performance and Resonant Frequency of Electromagnetic Induction Energy Harvesters. J. Sound Vib. 2010, 329, 1348–1361. [Google Scholar] [CrossRef]
- Sneller, A.J.; Mann, B.P. On the Nonlinear Electromagnetic Coupling between a Coil and an Oscillating Magnet. J. Phys. D Appl. Phys. 2010, 43, 295–305. [Google Scholar] [CrossRef]
- Cepnik, C.; Radler, O.; Rosenbaum, S.; Ströhla, T.; Wallrabea, U. Effective Optimization of Electromagnetic Energy Harvesters through Direct Computation of the Electromagnetic Coupling. Sens. Actuators A 2011, 167, 416–421. [Google Scholar] [CrossRef]
- Elvina, N.G.; Elvinb, A.A. An Experimentally Validated Electromagnetic Energy Harvester. J. Sound Vib. 2011, 30, 2314–2324. [Google Scholar] [CrossRef]
- Shen, W.; Zhu, S.; Xu, Y. An Experimental Study on Self-powered Vibration Control and Monitoring System Using Electromagnetic TMD and Wireless Sensors. Sens. Actuators A 2012, 180, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Harne, R.L. Theoretical Investigations of Energy Harvesting Efficiency from Structural Vibrations Using Piezoelectric and Electromagnetic Oscillators. J. Acoust. Soc. Am. 2012, 132, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zuo, L. Vibration Energy Harvesting from Random Force and Motion Excitations. Smart Mater. Struct. 2012, 21, 075025. [Google Scholar] [CrossRef]
- Tang, X.; Zuo, L. Simultaneous Energy Harvesting and Vibration Control of Structures with Tuned Mass Dampers. J. Intell. Mater. Syst. Struct. 2012, 23, 2117–2127. [Google Scholar] [CrossRef]
- Wang, Y.; Inman, D.J. A Survey of Control Strategies for Simultaneous Vibration Suppression and Energy Harvesting via Piezoceramics. J. Intell. Mater. Syst. Struct. 2012, 23, 2021–2037. [Google Scholar] [CrossRef]
- Zuo, L.; Cui, W. Dual-functional Energy-harvesting and Vibration Control: Electromagnetic Resonant Shunt Series Tuned Mass Dampers. J. Vib. Acoust. 2013, 135, 051018-1. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Liu, K.; Sadhu, A. Simultaneous Vibration Suppression and Energy Harvesting with a Non-traditional Vibration Absorber. J. Intell. Mater. Syst. Struct. 2018, 29, 1748–1763. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, S.; Deng, L. Piezoelectric-based Energy Harvesting in Bridge Systems. J. Intell. Mater. Syst. Struct. 2014, 25, 1414–1428. [Google Scholar] [CrossRef]
- Gatti, G.; Bennan, M.J.; Tehrani, M.G.; Thompson, D.J. Harvesting Energy from the Vibration of a Passing Train Using a Single-degree-of-freedom Oscillator. Mech. Syst. Signal Process. 2016, 66–67, 785–792. [Google Scholar] [CrossRef]
- Jacquelin, E.; Adhikari, S.; Friswell, M. A Piezoelectric Device for Impact Energy Harvesting. Smart Mater. Struct. 2011, 20, 105008. [Google Scholar] [CrossRef]
- Ylli, K.; Hoffmann, D.; Willmann, A.; Beker, P.; Folkmer, B.; Manoli, Y. Energy Harvesting from Human Motion: Exploiting Swing and Shock Excitations. Smart Mater. Struct. 2015, 24, 025029. [Google Scholar] [CrossRef]
- Lallart, M.; Inman, D.J.; Guyomar, D. Transient Performance of Energy Harvesting Strategies under Constant Force Magnitude Excitation. J. Intell. Mater. Syst. Struct. 2010, 21, 1279–1291. [Google Scholar] [CrossRef]
- Ahmadadadi, Z.; Khadem, S. Nonlinear Vibration Control and Energy Harvesting of a Beam Using a Nonlinear Energy Sink and a Piezoelectric Device. J. Sound Vib. 2014, 333, 4444–4457. [Google Scholar] [CrossRef]
- Kremer, D.; Liu, K. A Nonlinear Energy Sink with an Energy Harvester: Transient Responses. J. Sound Vib. 2014, 333, 4859–4880. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, L.; Liu, K. Piezoelectric Energy Harvesting with a Nonlinear Energy Sink. J. Intell. Mater. Syst. Struct. 2017, 28, 307–322. [Google Scholar] [CrossRef]
Inner Radius (mm) | Outer Radius (mm) | Length (mm) | Turns | Coil resistance (Ω) |
---|---|---|---|---|
12.175 | 18.525 | 31.75 | 320 | 2.3 |
1.0986 | 0.0005 | 0.0001 | 8.4866 |
1.0989 | 0.2652 | 0.0548 | 8.0363 |
1.1043 | 0.7932 | 0.1471 | 7.2165 |
1.1050 | 0.5432 | 0.1061 | 7.5317 |
1.1052 | 3.3349 | 0.4027 | 5.1139 |
1.1147 | 6.2759 | 0.5323 | 3.7120 |
1.1236 | 2.2825 | 0.3261 | 5.5917 |
1.1437 | 3.0811 | 0.3876 | 5.1684 |
1.1461 | 3.9818 | 0.4463 | 4.4665 |
1.2110 | 6.0371 | 0.5357 | 3.4238 |
1.4863 | 7.0964 | 0.5919 | 2.4423 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, M.; Liu, K. Vibration Suppression and Energy Harvesting with a Non-traditional Vibration Absorber: Transient Responses. Vibration 2018, 1, 105-122. https://doi.org/10.3390/vibration1010009
Yuan M, Liu K. Vibration Suppression and Energy Harvesting with a Non-traditional Vibration Absorber: Transient Responses. Vibration. 2018; 1(1):105-122. https://doi.org/10.3390/vibration1010009
Chicago/Turabian StyleYuan, Miao, and Kefu Liu. 2018. "Vibration Suppression and Energy Harvesting with a Non-traditional Vibration Absorber: Transient Responses" Vibration 1, no. 1: 105-122. https://doi.org/10.3390/vibration1010009
APA StyleYuan, M., & Liu, K. (2018). Vibration Suppression and Energy Harvesting with a Non-traditional Vibration Absorber: Transient Responses. Vibration, 1(1), 105-122. https://doi.org/10.3390/vibration1010009