Advances and Environmental Impact Assessment of Forest Fire Extinguishing Agents
Abstract
1. Introduction
2. Advances in Fire Extinguishing Agent Research
2.1. Gaseous Extinguishing Agents
2.2. Foam Fire Extinguishing Agents
2.3. Hydrogel Fire Extinguishing Agent
3. Evaluation System of Fire Extinguishants
3.1. Fire Extinguishant Standards
| Types of Fire Extinguishants | Current Standards | |
|---|---|---|
| Gaseous fire extinguishants | Fire extinguishing agent—carbon dioxide | [67] |
| Inert fire extinguishing agent | [68] | |
| HFCs fire extinguishing agents | [82] | |
| Foam extinguishing agent | Foam extinguishing agent | [75] |
| Class A foam fire extinguishants | [76] | |
| Powder extinguishing agent | - | [77] |
| Water based extinguishing agent | - | [78] |
3.2. Research Status of Environmental Performance
3.2.1. Aquatic Ecotoxicity
3.2.2. Terrestrial Plant Toxicity
3.2.3. Effects on Soil Microorganisms and Animals
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ODP | Ozone layer depletion |
| GWP | Global warming potential |
| HFCs | Hydrofluorocarbons |
| PFAS | Polyfluoroalkyl substances |
| ECHA | European Chemicals Agency |
| PFOS | Perfluoroalkyl and Polyfluoroalkyl Substances |
| PFOA | Perfluorooctanoic acid |
| AFFF | Aqueous film-forming foam |
| LCST | Lower critical solution temperature |
| DW | Dry Water |
| NFPA | National Fire Protection Association |
| NOAEL | No Observed Adverse Effect Level |
| LOAEL | Lowest Observed Adverse Effect Level |
| PBT | Persistent, bioaccumulative and toxic |
| vPvB | Very persistent and very bioaccumulative |
| CEN | European Committee for Standardization |
References
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Potapov, P.; Hansen, M.C.; Stehman, S.V.; Loveland, T.R.; Pittman, K. Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss. Remote Sens. Environ. 2008, 112, 3708–3719. [Google Scholar] [CrossRef]
- Achard, F.; Eva, H.D.; Mollicone, D.; Beuchle, R. The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests. Philos. Trans. R. Soc. Lond. Ser. B. Biol. Sci. 2008, 363, 2329–2337. [Google Scholar] [CrossRef]
- Feng, X.; Merow, C.; Liu, Z.; Park, D.S.; Roehrdanz, P.R.; Maitner, B.; Newman, E.A.; Boyle, B.L.; Lien, A.; Burger, J.R.; et al. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 2021, 597, 516–521. [Google Scholar] [CrossRef]
- Byrne, B.; Liu, J.; Bowman, K.W.; Pascolini-Campbell, M.; Chatterjee, A.; Pandey, S.; Miyazaki, K.; van der Werf, G.R.; Wunch, D.; Wennberg, P.O.; et al. Carbon emissions from the 2023 Canadian wildfires. Nature 2024, 633, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Teague, B.; Pascoe, S.; Ronald, M. The 2009 Victorian Bushfires Royal Commission Final Report. 2010. Available online: http://royalcommission.vic.gov.au/Commission-Reports/Final-Report.html (accessed on 18 October 2025).
- Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, F.; Fang, L.; Zheng, X.; Qiao, X.; Li, Z.; Meng, Q. Modelling of wildland-urban interface fire spread with the heterogeneous cellular automata model. Environ. Modell. Softw. 2021, 135, 104895. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Maui Wildfires. Available online: https://www.epa.gov/maui-wildfires (accessed on 18 October 2025).
- Maui Emergency Management Agency. 2023 Maui Wildfire After-Action Report. Available online: https://www.mauicounty.gov/70/emergency-management-agency (accessed on 18 October 2025).
- Higgins, A.; Whitten, S.; Slijepcevic, A.; Fogarty, L.; Laredo, L. An optimisation modelling approach to seasonal resource allocation for planned burning. Int. J. Wildland Fire 2011, 20, 175–183. [Google Scholar] [CrossRef]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef]
- Zong, X.; Tian, X.; Wang, X. An optimal firebreak design for the boreal forest of China. Sci. Total Environ. 2021, 781, 146822. [Google Scholar] [CrossRef]
- Àgueda, A.; Pastor, E.; Planas, E. Different scales for studying the effectiveness of long-term forest fire retardants. Prog. Energy Combust. Sci. 2008, 34, 782–796. [Google Scholar] [CrossRef]
- Giménez, A.; Pastor, E.; Zárate, L.; Planas, E.; Arnaldos, J. Long-term forest fire retardants: A review of quality, effectiveness, application and environmental considerations. Int. J. Wildland Fire 2004, 13, 1. [Google Scholar] [CrossRef]
- Liodakis, S.; Tsoukala, M. Ash Leaching of Forest Species Treated with Phosphate Fire Retardants. Water Air Soil Pollut. 2009, 199, 171–182. [Google Scholar] [CrossRef]
- Huang, X.; Fang, J.; Huo, Y.; Zhou, X. Visualization and quantitative analysis of research progress and development trends in gas fire extinguishing agents. Fuel 2025, 387, 134375. [Google Scholar] [CrossRef]
- Lei, B.; He, B.; Xiao, B.; Du, P.; Wu, B. Comparative study of single inert gas in confined space inhibiting open flame coal combustion. Fuel 2020, 265, 116976. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, G.; Liu, C.; Gao, Y. Comparison of fire extinguishing performance of four halon substitutes and Halon 1301. J. Fire Sci. 2021, 39, 370–399. [Google Scholar] [CrossRef]
- Su, J.Z.; Kim, A.K.; Mawhinney, J.R. Review of Total Flooding Gaseous Agents as Halon 1301 Substitutes. J. Fire Prot. Eng. 1996, 8, 45–63. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linteris, G.T.; Meier, O.C. Combustion properties of halogenated fire suppressants. Combust. Flame 2012, 159, 3569–3575. [Google Scholar] [CrossRef]
- Xing, H.; Lu, S.; Yang, H.; Zhang, H. Review on Research Progress of C6F12O as a Fire Extinguishing Agent. Fire 2022, 5, 50. [Google Scholar] [CrossRef]
- Xing, H.; Cheng, Y.; Lu, S.; Tao, N.; Zhang, H. A reactive molecular dynamics study of the pyrolysis mechanism of C6F12O. Mol. Phys. 2021, 119, e1976425. [Google Scholar] [CrossRef]
- Spyrakis, F.; Dragani, T.A. The EU’s Per- and Polyfluoroalkyl Substances (PFAS) Ban: A Case of Policy over Science. Toxics 2023, 11, 721. [Google Scholar] [CrossRef]
- Xu, J.; Guo, P.; Duan, Q.; Yu, X.; Zh ang, L.; Liu, Y.; Wang, Q. Experimental study of the effectiveness of three kinds of extinguishing agents on suppressing lithium-ion battery fires. Appl. Therm. Eng. 2020, 171, 115076. [Google Scholar] [CrossRef]
- Gupta, M.; Pasi, A.; Ray, A.; Kale, S.R. An experimental study of the effects of water mist characteristics on pool fire suppression. Exp. Therm. Fluid Sci. 2013, 44, 768–778. [Google Scholar] [CrossRef]
- Dong, Q.; Qi, J.; Lu, S.; Shi, L. Synergistic effects of typical clean gaseous fire-extinguishing agents. Fire Saf. J. 2024, 147, 104206. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Duan, Q.; Chen, M.; Xu, J.; Zhao, C.; Sun, J.; Wang, Q. Experimental study on the synergistic effect of gas extinguishing agents and water mist on suppressing lithium-ion battery fires. J. Energy Storage 2020, 32, 101801. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, X. Enclosure fire extinguishment with water mist and nitrogen as affected by fire size, obstruction and ventilation. Fire Saf. J. 2024, 142, 104051. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, Z.; Zheng, G.; Chen, P. Study on the effect of mist flux on water mist fire extinguishing. Fire Saf. J. 2022, 130, 103601. [Google Scholar] [CrossRef]
- Ratzer, A.F. History and Development of Foam as a Fire Extinguishing Medium. Ind. Eng. Chem. 1956, 48, 2013–2016. [Google Scholar] [CrossRef]
- Yuchong, H.; Ju, Q. Development and application status of foam extinguishing agent. Fire Saf. Sci. 2011, 20, 235–240. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, Y.; Wan, J.; Gao, J.; Liu, F. Optimization of protein recovery from sewage sludge via controlled and energy-saving ultrasonic-alkali hydrolysis. Sci. Total Environ. 2023, 870, 162004. [Google Scholar] [CrossRef]
- Zaggia, A.; Conte, L.; Padoan, G.; Bertani, R. Synthesis and Application of Perfluoroalkyl Quaternary Ammonium Salts in Protein-Based Fire-Fighting Foam Concentrates. J. Surfactants Deterg. 2010, 13, 33–40. [Google Scholar] [CrossRef]
- Hinnant, K.M.; Giles, S.L.; Smith, E.P.; Snow, A.W.; Ananth, R. Characterizing the Role of Fluorocarbon and Hydrocarbon Surfactants in Firefighting-Foam Formulations for Fire-Suppression. Fire Technol. 2020, 56, 1413–1441. [Google Scholar] [CrossRef]
- Peshoria, S.; Nandini, D.; Tanwar, R.K.; Narang, R. Short-chain and long-chain fluorosurfactants in firefighting foam: A review. Environ. Chem. Lett. 2020, 18, 1277–1300. [Google Scholar] [CrossRef]
- Roth, J.; Abusallout, I.; Hill, T.; Holton, C.; Thapa, U.; Hanigan, D. Release of Volatile Per- and Polyfluoroalkyl Substances from Aqueous Film-Forming Foam. Environ. Sci. Technol. Lett. 2020, 7, 164–170. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, J.; Sha, M.; Zhang, D.; Pan, R.; Jiang, B. Study on foam extinguishing agents based on hydrocarbon and perfluorinated branched short-chain fluorocarbon surfactants mixed system. Chem. Pap. 2021, 75, 6241–6255. [Google Scholar] [CrossRef]
- Jia, X.; Bo, H.; He, Y. Synthesis and characterization of a novel surfactant used for aqueous film-forming foam extinguishing agent. Chem. Pap. 2019, 73, 1777–1784. [Google Scholar] [CrossRef]
- Liu, S.; Yang, R.; Yin, N.; Faiola, F. The short-chain perfluorinated compounds PFBS, PFHxS, PFBA and PFHxA, disrupt human mesenchymal stem cell self-renewal and adipogenic differentiation. J. Environ. Sci. 2020, 88, 187–199. [Google Scholar] [CrossRef]
- Pizzurro, D.M.; Seeley, M.; Kerper, L.E.; Beck, B.D. Interspecies differences in perfluoroalkyl substances (PFAS) toxicokinetics and application to health-based criteria. Regul. Toxicol. Pharmacol. 2019, 106, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Wang, D.; Chen, J.; Zhang, J.; He, X.; Li, B.; He, X.; Liu, H. Assessing the mixed foam stability of different foam extinguishing agents under room temperature and thermal radiation: An experimental study. J. Mol. Liq. 2023, 369, 120805. [Google Scholar] [CrossRef]
- Jahura, F.T.; Mazumder, N.; Hossain, M.T.; Kasebi, A.; Girase, A.; Ormond, R.B. Exploring the Prospects and Challenges of Fluorine-Free Firefighting Foams (F3) as Alternatives to Aqueous Film-Forming Foams (AFFF): A Review. ACS Omega 2024, 9, 37430–37444. [Google Scholar] [CrossRef]
- Ananth, R.; Snow, A.W.; Hinnant, K.M.; Giles, S.L.; Farley, J.P. Synergisms between siloxane-polyoxyethylene and alkyl polyglycoside surfactants in foam stability and pool fire extinction. Colloids Surf. A Physicochem. Eng. Asp. 2019, 579, 123686. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, H.; Liu, S.; Tao, J.; Zhang, X.; Geng, X.; Xu, C.; Pan, Y. Experimental study on fire extinguishing performance of fluorine-free foam with nanoparticle-enhanced stability. J. Loss Prev. Process Ind. 2025, 97, 105690. [Google Scholar] [CrossRef]
- Jones, D.K.; Quinlin, K.A.; Wigren, M.A.; Choi, Y.J.; Sepúlveda, M.S.; Lee, L.S.; Haskins, D.L.; Lotufo, G.R.; Kennedy, A.; May, L.; et al. Acute Toxicity of Eight Aqueous Film-Forming Foams to 14 Aquatic Species. Environ. Sci. Technol. 2022, 56, 6078–6090. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Nguyen, H.; Kim, D.; Peng, H. Chronic toxicity of PFAS-free AFFF alternatives in terrestrial plant Brassica rapa. Sci. Total Environ. 2022, 850, 158100. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Ceja-Navarro, J.A.; Wu, X. Sublethal Toxicity of Fluorine-Free Firefighting Foams in Soil Invertebrate Caenorhabditis elegans. Environ. Sci. Technol. Lett. 2022, 9, 561–566. [Google Scholar] [CrossRef]
- Li, G.; Wang, Q.; Liu, G.; Yao, M.; Wang, Y.; Li, Y.; Lin, K.; Liu, X. Hydrogel Extinguishants. Nanomaterials 2024, 14, 1128. [Google Scholar] [CrossRef]
- Xiao, G.; Li, F.; Li, Y.; Chen, C.; Chen, C.; Liu, Q.; Chen, W. A novel biomass material composite hydrogel based on sodium alginate. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129383. [Google Scholar] [CrossRef]
- Dai, Z.; Huang, C.; Chen, Y.; Zhong, M.; He, W. Experimental study on fire extinguishing efficiency of polymer hydrogel fire extinguishing agent in pine-fir mixed coniferous forest fires. Case Stud. Therm. Eng. 2024, 64, 105413. [Google Scholar] [CrossRef]
- Han, Z.; Li, S.; Sun, M.; He, R.; Zhong, W.; Yu, C.; Cheng, S.; Xie, J. Fluorobenzene diluted low-density electrolyte for high-energy density and high-performance lithium-sulfur batteries. J. Energy Chem. 2022, 68, 752–761. [Google Scholar] [CrossRef]
- Dai, M.; Shang, Y.; Li, M.; Ju, B.; Liu, Y.; Tian, Y. Synthesis and characterization of starch ether/alginate hydrogels with reversible and tunable thermoresponsive properties. Mater. Res. Express 2020, 7, 85701. [Google Scholar] [CrossRef]
- Ma, L.; Huang, X.; Sheng, Y.; Liu, X.; Wei, G. Experimental Study on Thermosensitive Hydrogel Used to Extinguish Class A Fire. Polymers 2021, 13, 367. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.; Yang, Y.; Wang, C.; Shu, C.; Deng, J. Comparison of the inhibition mechanisms of five types of inhibitors on spontaneous coal combustion. Int. J. Energy Res. 2018, 42, 1158–1171. [Google Scholar] [CrossRef]
- Wang, G.; Yan, G.; Zhang, X.; Du, W.; Huang, Q.; Sun, L.; Zhang, X. Research and development of foamed gel for controlling the spontaneous combustion of coal in coal mine. J. Loss Prev. Process Ind. 2016, 44, 474–486. [Google Scholar] [CrossRef]
- Li, S.; Zhou, G.; Wang, Y.; Jing, B.; Qu, Y. Synthesis and characteristics of fire extinguishing gel with high water absorption for coal mines. Process Saf. Environ. Protect. 2019, 125, 207–218. [Google Scholar] [CrossRef]
- Tian, C.; Zhao, J.; Yang, J.; Zhang, J.; Yang, R. Preparation and characterization of fire-extinguishing efficiency of novel gel-protein foam for liquid pool fires. Energy 2023, 263, 125949. [Google Scholar] [CrossRef]
- Forny, L.; Pezron, I.; Saleh, K.; Guigon, P.; Komunjer, L. Storing water in powder form by self-assembling hydrophobic silica nanoparticles. Powder Technol. 2007, 171, 15–24. [Google Scholar] [CrossRef]
- Han, Z.; Gong, L.; Du, Z.; Duan, H. A Novel Environmental-Friendly Gel Dry-Water Extinguishant Containing Additives with Efficient Combustion Suppression Efficiency. Fire Technol. 2020, 56, 2365–2385. [Google Scholar] [CrossRef]
- Chen, X.; Fan, A.; Yuan, B.; Sun, Y.; Zhang, Y.; Niu, Y. Renewable biomass gel reinforced core-shell dry water material as novel fire extinguishing agent. J. Loss Prev. Process Ind. 2019, 59, 14–22. [Google Scholar] [CrossRef]
- Zou, Y.; Li, K.; Yuan, B.; Chen, X.; Fan, A.; Sun, Y.; Shang, S.; Chen, G.; Huang, C.; Dai, H.; et al. Inspiration from a thermosensitive biomass gel: A novel method to improving the stability of core-shell “dry water” fire extinguishing agent. Powder Technol. 2019, 356, 383–390. [Google Scholar] [CrossRef]
- Qin, B.; Dou, G.; Wang, Y.; Xin, H.; Ma, L.; Wang, D. A superabsorbent hydrogel–ascorbic acid composite inhibitor for the suppression of coal oxidation. Fuel 2017, 190, 129–135. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, H. Development of a novel bentonite–acrylamide superabsorbent hydrogel for extinguishing gangue fire hazard. Powder Technol. 2018, 323, 486–494. [Google Scholar] [CrossRef]
- Nabipour, H.; Shi, H.; Wang, X.; Hu, X.; Song, L.; Hu, Y. Flame Retardant Cellulose-Based Hybrid Hydrogels for Firefighting and Fire Prevention. Fire Technol. 2022, 58, 2077–2091. [Google Scholar] [CrossRef]
- GB 4396-2005; Fire Extinguishing Agent-Carbon Dioxide. Standards Press of China: Beijing, China, 2005.
- GB 20128-2006; Inert Fire Extinguishing Agent. Standards Press of China: Beijing, China, 2006.
- GB 18614-2012; Fire Extinguishing Agent Heptafluoropropane (HFC227ea). Standards Press of China: Beijing, China, 2012.
- GB 25971-2010; Fire Extinguishing Agent Hexafluoropropane (HFC236fa). Standards Press of China: Beijing, China, 2011.
- GB 6051-1985; Fire Extinguishing Agent of Bromotrifluoromethane. Standards Press of China: Beijing, China, 1985.
- GB 4065-1983; Fire Extinguishing Agent—Bromochlorodifluoro-Methane. Standards Press of China: Beijing, China, 1983.
- GB 4396-2024; Fire extinguishing Agent-Carbon Dioxide. Standards Press of China: Beijing, China, 2024.
- GB 20128-2024; Inert Fire Extinguishing Agent. Standards Press of China: Beijing, China, 2024.
- GB 15308-2006; Foam Extinguishing Agent. Standards Press of China: Beijing, China, 2006.
- GB 27897-2011; Class A Foam Extinguishing Agent. Standards Press of China: Beijing, China, 2011.
- GB 4066-2017; Powder Extinguishing Agent. Standards Press of China: Beijing, China, 2017.
- GB 17835-2008; Water Based Extinguishing Agent. Standards Press of China: Beijing, China, 2008.
- GB 17835-2024; Water Based Extinguishing Agent. Standards Press of China: Beijing, China, 2024.
- Mosina, K.S.; Nazarova, E.A.; Vinogradov, A.V.; Vinogradov, V.V.; Krivoshapkina, E.F.; Krivoshapkin, P.V. Alumina Nanoparticles for Firefighting and Fire Prevention. ACS Appl. Nano Mater. 2020, 3, 4386–4393. [Google Scholar] [CrossRef]
- Xu, M.; Wei, Y.; Qin, A.; Xu, Y.; Xu, M.; Li, B.; Liu, L. Novel silica hydrogel-based forest fire extinguishing agent: Construction, fire extinguishing performance and mechanism study. J. Clean. Prod. 2025, 486, 144490. [Google Scholar] [CrossRef]
- GB 35373-2017; HFC Fire Extinguishing Agents. Standards Press of China: Beijing, China, 2017.
- NFPA 12-1929; Standard on Carbon Dioxide Extinguishing Systems. National Fire Protection Association: Quincy, MA, USA, 1929.
- NFPA 11-2024; Standard for Low-, Medium, and High-Expansion Foam. National Fire Protection Association: Quincy, MA, USA, 2024.
- NFPA 2001-2025; Standard on Clean Agent Fire Extinguishing Systems. National Fire Protection Association: Quincy, MA, USA, 2025.
- NFPA 18A-2022; Standard on Water Additives for Fire Control and Vapor Mitigation. National Fire Protection Association: Quincy, MA, USA, 2022.
- EC No 1907/2006; The Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). European Parliament and Council: Brussels, Belgium, 2006.
- EC No 1272/2008; Classification, Labeling and Packaging of Chemicals. European Parliament and Council: Brussels, Belgium, 2008.
- EN 1568-3:2018; Fire Extinguishing Media—Foam Concentrates—Part 3: Specification for Low Expansion Foam Concentrates for Surface Application to Water-Immiscible Liquids. European Committee for Standardization: Brussels, Belgium, 2018.
- Dietrich, J.P.; Myers, M.S.; Strickland, S.A.; Van Gaest, A.; Arkoosh, M.R. Toxicity of forest fire retardant chemicals to stream-type chinook salmon undergoing parr–smolt transformation. Environ. Toxicol. Chem. 2013, 32, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Buhl, K.J.; Hamilton, S.J. Acute Toxicity of Fire-Control Chemicals, Nitrogenous Chemicals, and Surfactants to Rainbow Trout. Trans. Am. Fish. Soc. 2000, 129, 408–418. [Google Scholar] [CrossRef]
- Graetz, S.; Ji, M.; Hunter, S.; Sibley, P.K.; Prosser, R.S. Deterministic risk assessment of firefighting water additives to aquatic organisms. Ecotoxicology 2020, 29, 1377–1389. [Google Scholar] [CrossRef]
- Ozeri, L.; Blaustein, L.; Polevikov, A.; Kneitel, J.; Rahav, E.; Horwitz, R. Effects of a fire retardant on the Near Eastern Fire Salamander Salamandra infraimmaculata and aquatic community structure: An experimental approach. Hydrobiologia 2021, 848, 4713–4729. [Google Scholar] [CrossRef]
- East, A.G.; Narizzano, A.M.; Holden, L.A.; Bazar, M.A.; Bohannon, M.E.; Pervitsky, D.; Adams, V.H.; Reinke, E.N.; Quinn, M.J. Comparative Toxicity of Seven Aqueous Film-Forming Foam to In Vitro Systems and Mus. Environ. Toxicol. Chem. 2023, 42, 2364–2374. [Google Scholar] [CrossRef] [PubMed]
- Brito, D.Q.; Henke-Oliveira, C.; Oliveira-Filho, E.C. Acute Toxicity of Commercial Wildfire Retardants to Two Daphniid Species (Ceriodaphnia dubia and Daphnia magna). Toxics 2024, 12, 548. [Google Scholar] [CrossRef]
- Montagnolli, R.N.; Matos Lopes, P.R.; Matos Cruz, J.; Marina Turini Claro, E.; Quiterio, G.M.; Bidoia, E.D. The effects of fluoride based fire-fighting foams on soil microbiota activity and plant growth during natural attenuation of perfluorinated compounds. Environ. Toxicol. Pharmacol. 2017, 50, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Prosser, R.S. Investigation of the potential effects of firefighting water additives on soil invertebrates and terrestrial plants. Chemosphere 2023, 313, 137496. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fernández, M.; Gómez-Rey, M.X.; González-Prieto, S.J. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years. Sci. Total Environ. 2015, 515–516, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Bradstock, R.; Sanders, J.; Tegart, A. Short-term effects on the foliage of a eucalypt forest after an aerial application of a chemical fire retardant. Austral. For. 1987, 50, 71–80. [Google Scholar] [CrossRef]
- Heddle, E.M.; Specht, R.L. Dark Island Heath (Ninety-Mile Plain, South Australia). VIII. The Effect of Fertilizers on Composition and Growth, 1950–1972. Aust. J. Bot. 1975, 23, 151. [Google Scholar] [CrossRef]
- Basanta, M.; Díaz-Raviña, M.; González-Prieto, S.; Carballas, T. Biochemical properties of forest soils as affected by a fire retardant. Biol. Fertil. Soils 2002, 36, 377–383. [Google Scholar] [CrossRef]
- Barreiro, A.; Martin, A.; Carballas, T.; Diaz-Ravina, M. Response of soil microbial communities to fire and fire-fighting chemicals. Sci. Total Environ. 2010, 408, 6172–6178. [Google Scholar] [CrossRef]
- Barreiro, A.; Martín, A.; Carballas, T.; Díaz-Raviña, M. Long-term response of soil microbial communities to fire and fire-fighting chemicals. Biol. Fertil. Soils 2016, 52, 963–975. [Google Scholar] [CrossRef]
- ISO 17512–1:2008; Soil Quality—Avoidance Test for Determining the Quality of Soils and Effects of Chemicals on Behavior—Part 1: Test with Earthworms (Eisenia Fetida and Eisenia Andrei). ISO: Geneva, Switzerland, 2008.
- Yeardley, R.; Penrose, M.; Montoyo, P.R.; Ateia, M. Acute, chronic, and behavioral toxicity of fluorine-free foams to earthworm species Eisenia fetida and Dendrobaena veneta. Chemosphere 2024, 369, 143860. [Google Scholar] [CrossRef]
- Ateia, M.; Scheringer, M. From “forever chemicals” to fluorine-free alternatives. Science 2024, 385, 256–258. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, X.; Zhang, D.; Jin, L.; Huang, J.; Zhu, X.; Sun, J.; Yu, M.; Zhu, L. Biotransformation of Organophosphate Esters by Rice and Rhizosphere Microbiome: Multiple Metabolic Pathways, Mechanism, and Toxicity Assessment. Environ. Sci. Technol. 2023, 57, 1776–1787. [Google Scholar] [CrossRef]
- Annunziato, K.M.; Jantzen, C.E.; Gronske, M.C.; Cooper, K.R. Subtle morphometric, behavioral and gene expression effects in larval zebrafish exposed to PFHxA, PFHxS and 6:2 FTOH. Aquat. Toxicol. 2019, 208, 126–137. [Google Scholar] [CrossRef]
- Colombo, I.; Wolf, W.D.; Thompson, R.S.; Farrar, D.G.; Hoke, R.A.; L’haridon, J. Acute and chronic aquatic toxicity of ammonium perfluorooctanoate (APFO) to freshwater organisms. Ecotoxicol. Environ. Saf. 2008, 71, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Mackey, C.M.; Iacchetta, M.; Puglis, H.J. Environmental Persistence and Toxicity of Weathered Wildland Fire Retardants to Rainbow Trout. Arch. Environ. Contam. Toxicol. 2025, 88, 397–406. [Google Scholar] [CrossRef]
- Couto-Vázquez, A.; García-Marco, S.; González-Prieto, S.J. Long-term effects of fire and three firefighting chemicals on a soil—Plant system. Int. J. Wildland Fire 2011, 20, 856–865. [Google Scholar] [CrossRef]
- Gao, S.; Deluca, T.H. Influence of fire retardant and pyrogenic carbon on microscale changes in soil nitrogen and phosphorus. Biogeochemistry 2021, 152, 117–126. [Google Scholar] [CrossRef]
- González-Prieto, S.; García-Marco, S. Short- and medium-term effects of fire and fire-fighting chemicals on soil micronutrient availability. Sci. Total Environ. 2008, 407, 297–303. [Google Scholar] [CrossRef]
- Michalopoulos, C.; Koufopoulou, S.; Tzamtzis, N.; Pappa, A. Impact of a long-term fire retardant (Fire Trol 931) on the leaching of Ca, Mg, and K from a Mediterranean forest loamy soil. Environ. Sci. Pollut. Res. Int. 2016, 23, 5487–5494. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.H.; Sibly, R.M.; Peakall, D.B. Principles of Ecotoxicology; CRC Press: London, UK, 2016. [Google Scholar]
| Types of Hydrogel Extinguishants | Principle | Characteristics | Physical State |
|---|---|---|---|
| Thermosensitive type | Interaction between hydrophilic and hydrophobic groups | Temperature-responsive | Solution/gel |
| Foam type | Physical interaction of surfactant molecules | High thermal stability | Foam |
| Dry water type | Core–shell structure formation by silica and water | Dual physical-chemical inhibition | Powder |
| Common type | Natural polymer | Foam | Gel |
| Standard | Environmental Evaluation Indicators | Environmental Indicator Evaluation Tests |
|---|---|---|
| GB 17835-2024 [79] | 1. Acute fish toxicity 2. Acute oral toxicity 3. Eye irritation 4. Corrosion rate (impact on environmental media) | 1. Acute fish toxicity: Using zebrafish, exposed at (20 ± 2) °C for 96 h, observing mortality 2. Acute oral toxicity: Oral gavage in mice, observing mortality within 3 days 3. Eye irritation: Dropping samples into the right eye of rats, observing the eye opening time within 60 min 4. Corrosion rate: Measuring mass loss of Q235A steel sheets and 3A21 aluminum sheets after immersion in samples, and calculating the corrosion rate |
| NFPA 2001-2025 [85] | 1. ODP 2. GWP 3. Mammalian toxicity (NOAEL, LOAEL) 4. Impact of a low-oxygen environment caused by inert gases 5. Toxicity of decomposition products (e.g., acid gases) | 1. Determination of ODP/GWP: With reference to methods in IPCC and the Montreal Protocol, specifying GWP (100-year scale) and ODP values of various agents 2. Mammalian toxicity test: Halocarbons: Determining NOAEL and LOAEL through cardiac sensitization tests and acute exposure tests in accordance with Significant New Alternatives Policy procedures Inert gases: Assessing the impact of low-oxygen environment on personnel, and determining exposure limits through oxygen concentration monitoring 3. Low-oxygen environment test: Measuring oxygen concentration in the enclosure after inert gas system discharge to ensure compliance with personnel exposure time limits (e.g., for concentrations of 43–52% corresponding to oxygen concentrations of 12–10%, exposure time ≤ 3 min) 4. Decomposition product test: Detecting concentrations of acid gases such as HF produced by halocarbon combustion through high-temperature decomposition tests |
| EC No 1907/2006 (REACH) [87] | 1. PBT 2.vPvB 3. Aquatic ecotoxicity (fish, invertebrates, algae) 4. Degradability (biodegradation, hydrolysis) | 1. PBT/vPvB assessment: Combining data on degradability, bioaccumulation, and toxicity 2. Aquatic toxicity test: Short-term/long-term fish toxicity, acute toxicity of Daphnia magna, and algal growth inhibition test 3. Degradation test: Ready biodegradability test and hydrolysis stability test 4. Adsorption/desorption test: Evaluating adsorption potential in soil and sediment 5. Soil toxicity test: Toxicity test on soil invertebrates and test on the impact on soil microbial activity |
| Evaluation Dimensions | Core Indicators | References |
|---|---|---|
| Aquatic ecotoxicity | Aquatic organisms (daphnia, fish, etc.) LC50, algal growth rate, algal biomass | [47,108,109,110] |
| Terrestrial plant toxicity | Seed germination time, seed germination rate, plant survival rate, root length, plant height, biomass, flowering time, seed yield, etc. | [111,112,113,114] |
| Soil ecological effects | 1. Soil pH, soil element content (total carbon, total nitrogen, NH4+–N, NO3—N, Al, Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P, Zn, etc.) 2. Soil microbial community richness and diversity 3. Soil animals’ LC50, concentration causing 50% reduction in soil animals’ reproduction (EC50), soil animals’ avoidance tests, soil animals’ body weight tests | [101,102,103,104,105,111,112,113,114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Wang, L.; Zhang, W.; Ning, J.; Li, W.; Hu, T.; Yang, G. Advances and Environmental Impact Assessment of Forest Fire Extinguishing Agents. Fire 2025, 8, 411. https://doi.org/10.3390/fire8110411
Gao J, Wang L, Zhang W, Ning J, Li W, Hu T, Yang G. Advances and Environmental Impact Assessment of Forest Fire Extinguishing Agents. Fire. 2025; 8(11):411. https://doi.org/10.3390/fire8110411
Chicago/Turabian StyleGao, Jiaqi, Lixuan Wang, Weilong Zhang, Jibin Ning, Weike Li, Tongxin Hu, and Guang Yang. 2025. "Advances and Environmental Impact Assessment of Forest Fire Extinguishing Agents" Fire 8, no. 11: 411. https://doi.org/10.3390/fire8110411
APA StyleGao, J., Wang, L., Zhang, W., Ning, J., Li, W., Hu, T., & Yang, G. (2025). Advances and Environmental Impact Assessment of Forest Fire Extinguishing Agents. Fire, 8(11), 411. https://doi.org/10.3390/fire8110411

