Empirical Evidence of Reduced Wildfire Ignition Risk in the Presence of Strong Winds
Abstract
:1. Introduction
2. Research Design
2.1. Data
2.2. Methodology
3. Results
3.1. Probability of Ignition Based on Statistical Models
3.2. Probability of Ignition Based on a Machine Learning Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abatzoglou, J.T.; Balch, J.K.; Bradley, B.A.; Kolden, C.A. Human-related ignitions con-current with high winds promote large wildfires across the USA. Int. J. Wildland Fire 2018, 27, 377–386. [Google Scholar] [CrossRef]
- NWCG. Interagency Single Engine Air Tanker Operations Guide; National Wildfire Coordinating Group PMS NFES National Interagency Fire Center: Boise, ID, USA, 2014.
- NWCG. Wildland Fire Incident Management Field Guide; National Wildfire Coordinating Group PMS National Interagency Fire Center: Boise, ID, USA, 2013.
- Pagni, P.J. Causes of the 20 October 1991 Oakland Hills conflagration. Fire Saf. J. 1993, 21, 331–339. [Google Scholar] [CrossRef]
- Srock, A.F.; Charney, J.J.; Potter, B.E.; Goodrick, S.L. The Hot-Dry-Windy Index: A New Fire Weather Index. Atmosphere 2018, 9, 279. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E. The 10% wind speed rule of thumb for estimating a wild-fire’s forward rate of spread in forests and shrublands. Ann. For. Sci. 2019, 76, 1–11. [Google Scholar] [CrossRef]
- Deeming, J.E.; Burgan, R.E.; Cohen, J.D. The National Fire-Danger Rating System, 1978; Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1997; Volume 39.
- Nelson, R.M. The National Fire Danger Rating System: Derivation of Spread Index for Eastern and Southern States; US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1964; Volume 13.
- McArthur, A.G. Fire Behaviour in Eucalypt Forests; Department of Natural Development: Canberra, ACT, Australia, 1967. [Google Scholar]
- Noble, I.R.; Gill, A.M.; Bary, G.A.V. McArthur’s fire-danger meters expressed as equations. Aust. J. Ecol. 1980, 5, 201–203. [Google Scholar] [CrossRef]
- Dowdy, A.J.; Mills, G.A.; Finkele, K.; De Groot, W. Australian Fire Weather as Represented by the McArthur Forest Fire Danger Index and the Canadian Forest Fire Weather Index; Centre for Australian Weather and Climate Research: Melbourne, VIC, Australia, 2009; p. 91.
- Van Wagner, C.E. Structure of the Canadian Forest Fire Weather Index; Environment Canada, Forestry Service: Ottawa, ON, Canada, 1974; Volume 1333.
- Harrison, R. Danger of Ignition of Ground cover Fuels by Vehicle Exhaust Systems; ED&T Project 1337; US Forest Service, Equipment Development Center: San Dimas, CA, USA, 1970.
- Ellis, P.F.M. The Aerodynamic and Combustion Characteristics of Eucalypt Bark: A Firebrand Study. Ph.D. Thesis, Australian National University, Canberra, ACT, Australia, 2000. [Google Scholar]
- Manzello, S.L.; Cleary, T.G.; Shields, J.R.; Yang, J.C. Ignition of mulch and grasses by firebrands in wildland—Urban interface fires. Int. J. Wildland Fire 2006, 15, 427–431. [Google Scholar] [CrossRef]
- Curt, T.; Ganteaume, A.; Alleaume, S.; Borgniet, L.; Chandioux, O.; Jappiot, M.; Martin, W. Vegetation flammability and ignition potential at road-forest interfaces (southern France). In Proceedings of the 4th International Wildland Fire Conference, Sevilla, Spain, 14–17 May 2007; pp. 14–18. [Google Scholar]
- Ganteaume, A.; Lampin-Maillet, C.; Guijarro, M.; Hernando, C.; Jappiot, M.; Fonturbel, T.; Pérez-Gorostiaga, P.; Vega, J.A. Spot fires: Fuel bed flammability and capability of firebrands to ignite fuel beds. Int. J. Wildland Fire 2009, 18, 951–969. [Google Scholar] [CrossRef]
- Schiks, T.; Wotton, B. Assessing the probability of sustained flaming in masticated fuel beds. Can. J. For. Res. 2015, 45, 68–77. [Google Scholar] [CrossRef]
- Xanthopoulos, G.; Ghosn, D.; Kazakis, G. Investigation of the wind speed threshold above which discarded cigarettes are likely to be moved by the wind. Int. J. Wildland Fire 2006, 15, 567–576. [Google Scholar] [CrossRef]
- Satoh, K.; Zhong, Y.L.; Yang, K.T. Study of forest fire initiation due to lit cigarettes—Measurement and observation of flaming probability of dried leaves. In Proceedings of the 6th ASME-JSME Thermal Engineering Joint Conference, Honolulu, HI, USA, 16–20 March 2003. [Google Scholar]
- Koo, E.; Pagni, P.J.; Weise, D.R.; Woycheese, J.P. Firebrands and spotting ignition in large-scale fires. Int. J. Wildland Fire 2010, 19, 818–843. [Google Scholar] [CrossRef]
- Santoso, M.A.; Christensen, E.G.; Yang, J.; Rein, G. Review of the transition from smouldering to flaming combustion in wildfires. Front. Mech. Eng. 2019, 5, 49. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, Y.; Sun, L.; Hu, H.; Guo, F.; Wang, G.; Zhang, H. Influence of fuel moisture content, packing ratio and wind velocity on the ignition probability of fuel beds composed of Mongolian oak leaves via cigarette butts. Forests 2018, 9, 507. [Google Scholar] [CrossRef]
- Plucinski, M.P.; Anderson, W.R. Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. Int. J. Wildland Fire 2008, 17, 628–637. [Google Scholar] [CrossRef]
- Viegas, D.X.; Oliveira, R.; Almeida, M.; Kim, D. Ignition of fuel beds by cigarettes: A conceptual model to assess fuel bed moisture content and wind velocity effect on the ignition time and probability. Fire 2021, 4, 35. [Google Scholar] [CrossRef]
- Schumacher, V.; Setzer, A.; Saba, M.M.; Naccarato, K.P.; Mattos, E.; Justino, F. Charac-teristics of lightning-caused wildfires in central Brazil in relation to cloud-ground and dry lightning. Agric. For. Meteorol. 2022, 312, 108723. [Google Scholar] [CrossRef]
- Artés, T.; Oom, D.; de Rigo, D.; Durrant, T.H.; Maianti, P.; Libertà, G.; San-Miguel-Ayanz, J. A global wildfire dataset for the analysis of fire regimes and fire behaviour. Sci. Data 2019, 6, 1–11. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef]
- Center for International Earth Science Information Network—CIESIN—Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2018. [Google Scholar]
- Blessing, S.; Giering, R. Leaf Area Index and Fraction Absorbed of Photosynthetically Active Radiation 10-Daily Gridded Data from 1981 to Present. 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-lai-fapar?tab=overview (accessed on 10 May 2021).
- Fire Danger Indices Historical Data from the Copernicus Emergency Management Service. Fire Danger Indices Historical Data from the Copernicus Emergency Management Service—User Guide. 2021. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-fire-historical?tab=overview (accessed on 17 May 2021).
- LaValley, M.P. Logistic regression. Circulation 2008, 117, 2395–2399. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 398. [Google Scholar]
- Bozdogan, H. Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika 1987, 52, 345–370. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized additive models: Some applications. J. Am. Stat. Assoc. 1987, 82, 371–386. [Google Scholar] [CrossRef]
- Chouldechova, A.; Hastie, T. Generalized additive model selection. arxiv Prepr. 2015, arXiv:1506.03850. [Google Scholar]
- Servén, D.; Brummitt, C. “A Tour of PyGAM”. A Tour of pyGAM-pyGAM Documentation. 2018. Available online: https://pygam.readthedocs.io/en/latest/notebooks/tour_of_pygam.html (accessed on 25 August 2023).
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Ramraj, S.; Uzir, N.; Sunil, R.; Banerjee, S. Experimenting XGBoost algorithm for prediction and classification of different datasets. Int. J. Control Theory Appl. 2016, 9, 651–662. [Google Scholar]
- Li, H.; Cao, Y.; Li, S.; Zhao, J.; Sun, Y. XGBoost Model and Its Application to Personal Credit Evaluation. IEEE Intell. Syst. 2020, 35, 52–61. [Google Scholar] [CrossRef]
- Parsa, A.B.; Movahedi, A.; Taghipour, H.; Derrible, S.; Mohammadian, A. (Kouros) Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis. Accid. Anal. Prev. 2020, 136, 105405. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Duchesnay, E. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
Variable | Abbreviation | Source |
---|---|---|
daily burned classification | burned | [27] |
2 m temperature | temp | [28] |
relative humidity | RH | |
10 m wind speed | wind_speed | |
population density | population | [30] |
leaf area index | LAI | [31] |
daily fire weather index | FWI | [32] |
daily fire danger index | FFDI |
Model | #1 | #2 | ||
---|---|---|---|---|
Coefficient | Odds Ratio | Coefficient | Odds Ratio | |
Wind Velocity | −0.15 *** | −0.14 *** | 0.07 *** | 0.08 *** |
(0.00) | (0.00) | (0.00) | (0.00) | |
Wind Velocity | - | - | −0.04 *** | −0.04 *** |
Squared | (0.00) | (0.00) | ||
RH | −0.05 *** | −0.05 *** | −0.05 *** | −0.05 *** |
(0.00) | (0.00) | (0.00) | (0.00) | |
Temperature | −0.007 *** | −0.007 *** | −0.008 *** | −0.007 *** |
(0.00) | (0.00) | (0.00) | (0.00) | |
Population | −0.0005 *** | −0.0005 *** | −0.0004 *** | −0.0004 *** |
(0.00) | (0.00) | (0.00) | (0.00) | |
LAI | 0.22 *** | 0.25 *** | 0.22 *** | 0.25 *** |
(0.00) | (0.00) | (0.00) | (0.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shmuel, A.; Heifetz, E. Empirical Evidence of Reduced Wildfire Ignition Risk in the Presence of Strong Winds. Fire 2023, 6, 338. https://doi.org/10.3390/fire6090338
Shmuel A, Heifetz E. Empirical Evidence of Reduced Wildfire Ignition Risk in the Presence of Strong Winds. Fire. 2023; 6(9):338. https://doi.org/10.3390/fire6090338
Chicago/Turabian StyleShmuel, Assaf, and Eyal Heifetz. 2023. "Empirical Evidence of Reduced Wildfire Ignition Risk in the Presence of Strong Winds" Fire 6, no. 9: 338. https://doi.org/10.3390/fire6090338
APA StyleShmuel, A., & Heifetz, E. (2023). Empirical Evidence of Reduced Wildfire Ignition Risk in the Presence of Strong Winds. Fire, 6(9), 338. https://doi.org/10.3390/fire6090338