Simulation Test on Cooling and Fire Suppression with Liquid Nitrogen in Computer Room of Data Center
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Test System
2.2. Simulation Test Scheme
2.2.1. Test Content
2.2.2. Data Acquisition and Processing
2.3. Test Procedure
3. Results and Discussion
3.1. The Variations of Temperature in Cooling Process
3.2. The Variations of Oxygen Concentration in Cooling Process
3.3. Extinguishing Effects of Liquid Nitrogen on Optical Fiber Combustion
3.4. Extinguishing Effects of Liquid Nitrogen on Combined Combustion of UPS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y. Research on Application and Numerical Simulation of Channel Sealing Technology in Data Center Machine Room. Master’s Thesis, Donghua University, Shanghai, China, 2021. [Google Scholar]
- Zhou, X.; Liu, H.; Urata, R.; Zebian, S. Scaling large data center interconnects: Challenges and solutions. Opt. Fiber Technol. 2018, 44, 61–68. [Google Scholar] [CrossRef]
- Park, C.S. An efficient and secure physical security method of data center. J. Secur. Eng. 2015, 12, 609–620. [Google Scholar]
- Huang, W.; Chen, Z. The diagnosis and improving method for the potential hazards of electrical fire. Fire Technol. 2000, 3, 61–64. [Google Scholar]
- Cho, J.; Park, B.; Jeong, Y. Thermal performance evaluation of a data center cooling system under fault conditions. Energies 2019, 12, 2996. [Google Scholar] [CrossRef] [Green Version]
- Li, L. The fire prevention in a database center. J. Chin. People’s Armed Police Force Acad. 2007, 23, 48–51. [Google Scholar]
- Li, G. Experimental Research and Numerical Simulation of Liquid Nitrogen Fire Control in Computer Data Center. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2019. [Google Scholar]
- Meacham, B.J. Factors affecting the early detection of fire in electronic equipment and cable installations. Fire Technol. 1993, 29, 34–59. [Google Scholar] [CrossRef]
- Volk, E.; Rathgeb, D.; Oleksiak, A. CoolEmAll—Optimising cooling efficiency in data centres. Comput. Sci.-Res. Dev. 2014, 29, 253–261. [Google Scholar] [CrossRef]
- Bhagwat, H.; Singh, A.; Vasan, A. Faster exploration of data centre cooling using thermal influence indices. Sustain. Comput. Inform. Syst. 2013, 3, 120–131. [Google Scholar] [CrossRef]
- Sun, Z.; Jiang, J.; Zhan, W. Influence of additives on the fire suppression performance of water mist. J. China Univ. Min. Technol. 2014, 43, 794–799. [Google Scholar]
- Yu, S.; Yu, M.; Zheng, L. Effect of fire suppression additives on the droplet-diameter distribution of water mist. J. China Univ. Min. Technol. 2008, 37, 503–508. [Google Scholar]
- Strianese, M.; Torricelli, N.; Tarozzi, L.; Santangelo, P.E. Experimental Assessment of the Acoustic Performance of Nozzles Designed for Clean Agent Fire Suppression. Appl. Sci. 2023, 13, 186. [Google Scholar] [CrossRef]
- Zeng, D.; Su, P.P.; Madan, R.; Wang, Y. Evaluation of flammability and smoke corrosivity of data/power cables used in data centers. Fire Saf. J. 2021, 120, 103094. [Google Scholar] [CrossRef]
- Nada, S.A.; Said, M.A.; Rady, M.A. Numerical investigation and parametric study for thermal and energy management enhancements in data center buildings. Appl. Therm. Eng. 2016, 98, 110–128. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, J. Fire extinct experiments with water mist by adding additives. J. Therm. Sci. 2011, 20, 563–569. [Google Scholar] [CrossRef]
- Pei, B.; Zhu, Z.; Yang, S.; Wei, S.; Pan, R.; Yu, M.; Chen, W. Evaluation of the suppression effect on the flame intensification of ethanol fire by N2 twin-fluid water mist containing KQ compound additive. Process Saf. Environ. Prot. 2021, 149, 289–298. [Google Scholar] [CrossRef]
- Rohilla, M.; Saxena, A.; Dixit, P.K. Aerosol Forming Compositions for Fire Fighting Applications: A Review. Fire Technol. 2019, 55, 2515–2545. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H. Comparative experiment study on fire prevention and extinguishing in goaf by N2-water mist and CO2-water mist. Arab. J. Geosci. 2020, 13, 856. [Google Scholar] [CrossRef]
- Shi, B.; Zhou, F. Fire Extinguishment behaviors of liquid fuel using liquid nitrogen Jet. Process Saf. Prog. 2016, 35, 407–413. [Google Scholar] [CrossRef]
- Ji, H.; Li, Y.; Su, H. Experimental investigation on the cooling and inerting effects of liquid nitrogen injected into a confined space. Symmetry 2019, 11, 579. [Google Scholar] [CrossRef] [Green Version]
- Levendis, Y.A.; Delichatsios, M.A. Pool fire extinction by remotely controlled application of liquid nitrogen. Process Saf. Prog. 2011, 30, 164–167. [Google Scholar] [CrossRef]
- Zhou, F.; Shi, B.; Cheng, J. Approach to control a serious mine fire with using liquid nitrogen as extinguishing media. Fire Technol. 2015, 51, 325–334. [Google Scholar]
- Shi, B.; Zhou, F. Application of a liquid nitrogen direct jet system to the extinguishment of oil pool fires in open space. Process Saf. Prog. 2017, 36, 165–177. [Google Scholar] [CrossRef]
- Wang, W.; Qi, Y.; Liu, J. Study on multi field coupling numerical simulation of nitrogen injection in goaf and fire-fighting technology. Sci. Rep. 2022, 12, 17399. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Wang, H.; Yang, J. Large-area goaf fires: A numerical method for locating high-temperature zones and assessing the effect of liquid nitrogen fire control. Environmental Earth Sci. 2016, 75, 1396. [Google Scholar] [CrossRef]
- Quintiere, J.G. Scaling applications in fire research. Fire Saf. J. 1989, 15, 3–29. [Google Scholar] [CrossRef]
- Ingason, H.; Li, Y.Z. Model scale tunnel fire tests with longitudinal ventilation. Fire Saf. J. 2010, 45, 371–384. [Google Scholar] [CrossRef]
- Reitz, R.D. Atomization and other Breakup Regimes of a Liquid Jet. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1978. [Google Scholar]
Type | Equivalent Diameter (mm) | Flow (L/min) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.3 bar | 1 bar | 2 bar | 3 bar | 4 bar | 5 bar | 6 bar | 7 bar | 10 bar | 20 bar | ||
6510# | 2.0 | 1.0 | 2.3 | 3.2 | 3.9 | 4.6 | 5.1 | 5.6 | 6.0 | 7.2 | 10.2 |
6520# | 2.8 | 1.9 | 4.6 | 6.5 | 7.9 | 9.1 | 10.2 | 11.2 | 12.2 | 14.4 | 20 |
6530# | 3.6 | 2.5 | 6.8 | 9.7 | 11.8 | 13.7 | 15.3 | 16.7 | 18.1 | 22 | 31 |
11010# | 2.0 | 1.2 | 2.3 | 3.2 | 3.9 | 4.6 | 5.1 | 5.6 | 6.0 | 7.2 | 10.2 |
11020# | 2.8 | 2.5 | 4.6 | 6.5 | 7.9 | 9.1 | 10.2 | 11.2 | 12.1 | 14.4 | 20 |
Type | Equivalent Diameter (mm) | Flow (L/min) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.5 bar | 0.7 bar | 1.5 bar | 2 bar | 3 bar | 4 bar | 5 bar | 6 bar | 7 bar | 10 bar | ||
5B# | 2.0 | 1.6 | 1.9 | 2.7 | 3.1 | 3.7 | 4.2 | 4.7 | 5.1 | 5.5 | 6.5 |
10B# | 3.18 | 3.3 | 3.8 | 5.4 | 6.2 | 7.4 | 8.5 | 9.4 | 10.2 | 11.0 | 13.0 |
Nozzle | Temperature * | Monitoring Position | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
5B# | T0 | 1.0 | 2.3 | 3.2 | 3.9 | 4.6 | 5.1 |
Tmin | 1.9 | 4.6 | 6.5 | 7.9 | 9.1 | 10.2 | |
10B# | T0 | 1.0 | 2.3 | 3.2 | 3.9 | 4.6 | 5.1 |
Tmin | 1.9 | 4.6 | 6.5 | 7.9 | 9.1 | 10.2 |
Type | Temperature * | Monitoring Position | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
5B# | T0 | 18.3 | 19.5 | 19.4 | 19.7 | 18.9 | 19.5 | 18.1 | 19.7 | 19.0 | 20.2 | 19.0 | 19.6 |
Tmin | 14.8 | 18.1 | 16.9 | 17.8 | 15.3 | 18.5 | 15.3 | 18.0 | 14.9 | 17.1 | 14.6 | 17.5 | |
10B# | T0 | 17.9 | 19.2 | 19.0 | 19.6 | 18.5 | 19.5 | 17.8 | 19.5 | 18.4 | 19.9 | 18.4 | 19.5 |
Tmin | 16.7 | 18.3 | 17.2 | 17.8 | 16.0 | 18.4 | 15.8 | 17.4 | 16.8 | 17.6 | 17.3 | 16.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, J.; Wang, T.; Li, G.; Kang, J. Simulation Test on Cooling and Fire Suppression with Liquid Nitrogen in Computer Room of Data Center. Fire 2023, 6, 116. https://doi.org/10.3390/fire6030116
Meng J, Wang T, Li G, Kang J. Simulation Test on Cooling and Fire Suppression with Liquid Nitrogen in Computer Room of Data Center. Fire. 2023; 6(3):116. https://doi.org/10.3390/fire6030116
Chicago/Turabian StyleMeng, Jianbing, Tingrong Wang, Guanghua Li, and Jianhong Kang. 2023. "Simulation Test on Cooling and Fire Suppression with Liquid Nitrogen in Computer Room of Data Center" Fire 6, no. 3: 116. https://doi.org/10.3390/fire6030116
APA StyleMeng, J., Wang, T., Li, G., & Kang, J. (2023). Simulation Test on Cooling and Fire Suppression with Liquid Nitrogen in Computer Room of Data Center. Fire, 6(3), 116. https://doi.org/10.3390/fire6030116