Exploring the Application Potential and Performance of SiO2 Aerogel Mortar in Various Tunnel High-Temperature Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Proportion
2.3. Specimen Preparation
2.4. Test Methods
3. Results and Discussion
3.1. Morphology of SiO2 Aerogel after Tunnel Fire
3.2. SEM Analysis of SiO2 Aerogel
3.3. XRD Analysis of SiO2 Aerogel
3.4. Properties of SiO2 Aerogel Mortar
3.5. Morphology of SiO2 Aerogel Mortar after Tunnel Fire
3.6. Residual Mass Rate of SiO2 Aerogel Mortar
3.7. Residual Compressive Strength of SiO2 Aerogel Mortar
3.8. SEM Analysis of SiO2 Aerogel Mortar
3.9. XRD Analysis of SiO2 Aerogel Mortar
4. Conclusions
- (1)
- The critical temperature and critical time of SiO2 aerogel particles from amorphous to crystalline structure were about 1100 °C and 1.5 h, respectively.
- (2)
- The SiO2 aerogel mortar developed in this study exhibited low thermal conductivity and high mechanical properties. The compressive strength, bond strength, dry density, water resistance, moisture resistance, and freeze–thaw resistance of the SiO2 aerogel mortar met the requirements for its use as a fireproof coating.
- (3)
- The damage degree of the SiO2 aerogel mortar increased with the increase in fire temperature and duration from both macroscopic and microscopic perspectives. It exhibited superior fire resistance and maintained volume stability when exposed to temperatures of 1000 °C and 1100 °C. The damage degree under the fire temperature of 1200 °C was much higher than that under 1000 and 1100 °C.
- (4)
- Compared with the performance of the SiO2 aerogel mortar at fire temperature of 1200 °C, its mass and compressive strength decreased smoothly at fire temperatures of 1000 and 1100 °C. After being exposed to fire temperature of 1100 °C for 2.5 h, the residual mass ratio and residual compressive strength were 81% and 1.8 MPa, respectively.
- (5)
- The test results indicated that the SiO2 aerogel mortar can be used as a fireproofing coating, capable of withstanding tunnel fires at 1100 °C for 2.5 h.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santos-Reyes, J.; Beard, A.N. An analysis of the emergency response system of the 1996 Channel tunnel fire. Tunn. Undergr. Space Technol. 2017, 65, 121–139. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, T.; Guo, Q.; Yu, T.; Fang, Z.; Yan, Z. Full-scale experimental study on fire characteristics induced by double fire sources in a two-lane road tunnel. Tunn. Undergr. Space Technol. 2023, 131, 104768. [Google Scholar] [CrossRef]
- Chen, H.; Liu, T.; You, X.; Yuan, D.; Ping, Y.; Zhang, Q. Experimental investigation on fire damage to staggered segmental lining of shield tunnel. Tunn. Undergr. Space Technol. 2023, 141, 105359. [Google Scholar] [CrossRef]
- Ingason, H. Design fire curves for tunnels. Fire Saf. J. 2009, 44, 259–265. [Google Scholar] [CrossRef]
- de Silva, D.; Andreini, M.; Bilotta, A.; De Rosa, G.; La Mendola, S.; Nigro, E.; Rios, O. Structural safety assessment of concrete tunnel lining subjected to fire. Fire Saf. J. 2022, 134, 103697. [Google Scholar] [CrossRef]
- Lai, J.; Qiu, J.; Fan, H.; Chen, J.; Xie, Y. Freeze-proof method and test verification of a cold region tunnel employing electric heat tracing. Tunn. Undergr. Space Technol. 2016, 60, 56–65. [Google Scholar] [CrossRef]
- Li, Y.Z.; Ingason, H. Overview of research on fire safety in underground road and railway tunnels. Tunn. Undergr. Space Technol. 2018, 81, 568–589. [Google Scholar] [CrossRef]
- Qiu, J.; Yang, T.; Wang, X.; Wang, L.; Zhang, G. Review of the flame retardancy on highway tunnel asphalt pavement. Constr. Build. Mater. 2019, 195, 468–482. [Google Scholar] [CrossRef]
- Guo, X.; Pan, X.; Zhang, L.; Wang, Z.; Hua, M.; Jiang, J. Comparative study on ventilation and smoke extraction systems of different super-long river-crossing subway tunnels under fire scenarios. Tunn. Undergr. Space Technol. 2021, 113, 103849. [Google Scholar] [CrossRef]
- Wang, F.; Wang, M.; Huo, J. The effects of the passive fire protection layer on the behavior of concrete tunnel linings: A field fire testing study. Tunn. Undergr. Space Technol. 2017, 69, 162–170. [Google Scholar] [CrossRef]
- Peng, G.; Niu, X.; Shang, Y.; Zhang, D.; Chen, X.; Ding, H. Combined curing as a novel approach to improve resistance of ultra-high performance concrete to explosive spalling under high temperature and its mechanical properties. Cem. Concr. Res. 2018, 109, 147–158. [Google Scholar] [CrossRef]
- Lura, P.; Terrasi, G.P. Reduction of fire spalling in high-performance concrete by means of superabsorbent polymers and polypropylene fibers. Cem. Concr. Compos. 2014, 49, 36–42. [Google Scholar] [CrossRef]
- Liang, X.; Wu, C.; Su, Y.; Chen, Z.; Li, Z. Development of ultra-high performance concrete with high fire resistance. Constr. Build. Mater. 2018, 179, 400–412. [Google Scholar] [CrossRef]
- Netinger Grubeša, I.; Marković, B.; Gojević, A.; Brdarić, J. Effect of hemp fibers on fire resistance of concrete. Constr. Build. Mater. 2018, 184, 473–484. [Google Scholar] [CrossRef]
- Bezgin, N.Ö. An experimental evaluation to determine the required thickness of passive fire protection layer for high strength concrete tunnel segments. Constr. Build. Mater. 2015, 95, 279–286. [Google Scholar] [CrossRef]
- Koksal, F.; Coşar, K.; Dener, M.; Benli, A.; Gencel, O. Insulating and fire-resistance performance of calcium aluminate cement based lightweight mortars. Constr. Build. Mater. 2023, 362, 129759. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Y.; Zhang, Y.; Zheng, W. Experimental study of high-temperature resistance of alkali-activated slag crushed aggregate mortar. J. Mater. Res. Technol. 2023, 23, 3961–3973. [Google Scholar] [CrossRef]
- Ding, C.; Xue, K.; Cui, H.; Xu, Z.; Yang, H.; Bao, X.; Yi, G. Research on fire resistance of silica fume insulation mortar. J. Mater. Res. Technol. 2023, 25, 1273–1288. [Google Scholar] [CrossRef]
- Krivenko, P.V.; Guzii, S.G.; Bodnarova, L.; Valek, J.; Hela, R.; Zach, J. Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concrete. J. Build. Eng. 2016, 8, 14–19. [Google Scholar] [CrossRef]
- Soleimani Dorcheh, A.; Abbasi, M.H. Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 2008, 199, 10–26. [Google Scholar] [CrossRef]
- Lamy-Mendes, A.; Pontinha, A.D.R.; Alves, P.; Santos, P.; Durães, L. Progress in silica aerogel-containing materials for buildings’ thermal insulation. Constr. Build. Mater. 2021, 286, 122815. [Google Scholar] [CrossRef]
- Ihara, T.; Grynning, S.; Gao, T.; Gustavsen, A.; Jelle, B.P. Impact of convection on thermal performance of aerogel granulate glazing systems. Energy Build. 2015, 88, 165–173. [Google Scholar] [CrossRef]
- Yang, J.; Wu, H.; Xu, X.; Huang, G.; Xu, T.; Guo, S.; Liang, Y. Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency. Renew. Energy 2019, 138, 445–457. [Google Scholar] [CrossRef]
- Wang, C.; Liang, W.; Yang, Y.; Liu, F.; Sun, H.; Zhu, Z.; Li, A. Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage. Renew. Energy 2020, 153, 182–192. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, B.; Wang, Z.; Liu, W.; Liu, X. Development of reduced thermal conductivity ductile cement-based composite material by using silica aerogel and silane. J. Build. Eng. 2023, 65, 105698. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, J.; Lu, Z.; Li, J.; Niu, Y.; Yang, Y. Pore structure and hardened properties of aerogel/cement composites based on nanosilica and surface modification. Constr. Build. Mater. 2020, 245, 118434. [Google Scholar] [CrossRef]
- Sonnick, S.; Meier, M.; Ross-Jones, J.; Erlbeck, L.; Medina, I.; Nirschl, H.; Rädle, M. Correlation of pore size distribution with thermal conductivity of precipitated silica and experimental determination of the coupling effect. Appl. Therm. Eng. 2019, 150, 1037–1045. [Google Scholar] [CrossRef]
- Huang, D.; Guo, C.; Zhang, M.; Shi, L. Characteristics of nanoporous silica aerogel under high temperature from 950 °C to 1200 °C. Mater. Des. 2017, 129, 82–90. [Google Scholar] [CrossRef]
- Lei, Y.; Chen, X.; Song, H.; Hu, Z.; Cao, B. The influence of thermal treatment on the microstructure and thermal insulation performance of silica aerogels. J. Non-Cryst. Solids 2017, 470, 178–183. [Google Scholar] [CrossRef]
- Cai, H.; Jiang, Y.; Feng, J.; Chen, Q.; Zhang, S.; Li, L.; Feng, J. Nanostructure evolution of silica aerogels under rapid heating from 600 °C to 1300 °C via in-situ TEM observation. Ceram. Int. 2020, 46, 12489–12498. [Google Scholar] [CrossRef]
- GB/T20473-2021; Dry-Mixed Thermal Insulating Mortar for Buildings. Standardization Administration of China: Beijing, China, 2021.
- GB28375-2012; Fireproof Coatings for Concrete Structure. Standardization Administration of China: Beijing, China, 2012.
- JGJ/70-2009; Standard for Test Method of Basic Properties of Construction Mortar. Standardization Administration of China: Beijing, China, 2009.
- GB/T10294-2008; Thermal Insulation-Determination of Steady-State Thermal Resistance and Related Properties-Heat Flow Meter Apparatus. Standardization Administration of China: Beijing, China, 2008.
- Koebel, M.; Rigacci, A.; Achard, P. Aerogel-based thermal superinsulation: An overview. J. Sol-Gel Sci. Technol. 2012, 63, 315–339. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, Y.; Xu, N.; Liu, H.; Wu, N.; Han, C.; Wang, B.; Wang, Y. Thermal stable, fire-resistant and high strength SiBNO fiber/SiO2 aerogel composites with excellent thermal insulation and wave-transparent performances. Mater. Today Commun. 2022, 33, 104261. [Google Scholar] [CrossRef]
- Pan, Y.; He, S.; Gong, L.; Cheng, X.; Li, C.; Li, Z.; Liu, Z.; Zhang, H. Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying. Mater. Des. 2017, 113, 246–253. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmad, S.; Sheikh, J.N. Silica centered aerogels as advanced functional material and their applications: A review. J. Non-Cryst. Solids 2023, 611, 122322. [Google Scholar] [CrossRef]
- Poletto, M.; Ornaghi, H.; Zattera, A. Native Cellulose: Structure, Characterization and Thermal Properties. Materials 2014, 7, 6105–6119. [Google Scholar] [CrossRef]
- Hu, Y.; Xiao, Z.; Wang, H.; Ye, C.; Wu, Y.; Xu, S. Fabrication and characterization of porous CaSiO3 ceramics. Ceram. Int. 2019, 45, 3710–3714. [Google Scholar] [CrossRef]
- Du, B.; Hong, C.; Wang, A.; Zhou, S.; Qu, Q.; Zhou, S.; Zhang, X. Preparation and structural evolution of SiOC preceramic aerogel during high-temperature treatment. Ceram. Int. 2018, 44, 563–570. [Google Scholar] [CrossRef]
- Zhu, P.; Brunner, S.; Zhao, S.; Griffa, M.; Leemann, A.; Toropovs, N.; Malekos, A.; Koebel, M.M.; Lura, P. Study of physical properties and microstructure of aerogel-cement mortars for improving the fire safety of high-performance concrete linings in tunnels. Cem. Concr. Compos. 2019, 104, 103414. [Google Scholar] [CrossRef]
- Chousidis, N.; Constantinides, G. Fire endurance and corrosion resistance of nano-modified cement mortars exposed to elevated temperatures. Ceram. Int. 2023, 49, 19182–19193. [Google Scholar] [CrossRef]
- Kanagaraj, B.; Anand, N.; Cashell, K.A.; Andrushia, A.D. Post-fire behaviour of concrete containing nano-materials as a cement replacement material. Case Stud. Constr. Mater. 2023, 18, e2171. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, Y.; Peng, C.; Song, S.; Lopez-Valdivieso, A. Lime mortars—The role of carboxymethyl cellulose on the crystallization of calcium carbonate. Constr. Build. Mater. 2018, 168, 169–177. [Google Scholar] [CrossRef]
- Ahn, Y.B.; Jang, J.G.; Lee, H.K. Mechanical properties of lightweight concrete made with coal ashes after exposure to elevated temperatures. Cem. Concr. Compos. 2016, 72, 27–38. [Google Scholar] [CrossRef]
- Link, T.; Bellmann, F.; Ludwig, H.M.; Haha, M.B. Reactivity and phase composition of Ca2SiO4 binders made by annealing of alpha-dicalcium silicate hydrate. Cem. Concr. Res. 2015, 67, 131–137. [Google Scholar] [CrossRef]
- Pan, Z.; Tao, Z.; Murphy, T.; Wuhrer, R. High temperature performance of mortars containing fine glass powders. J. Clean. Prod. 2017, 162, 16–26. [Google Scholar] [CrossRef]
Compositions | SiO2 | Al2O3 | Fe2O3 | TiO2 | CaO | MgO | K2O | Na2O | Others |
---|---|---|---|---|---|---|---|---|---|
Cement | 21.55 | 4.39 | 3.37 | 0.61 | 63.68 | 1.22 | 0.89 | 0.30 | 3.98 |
FA | 37.87 | 24.82 | 10.89 | 2.01 | 14.79 | 0.99 | 2.01 | 0.58 | 6.04 |
SF | 95.2 | 0.05 | - | - | 1.21 | 0.08 | 0.01 | - | 3.45 |
Particle Size (mm) | Surface Properties | Density (kg/m3) | Aperture (nm) | Specific Surface Area (g/m2) | Thermal Conductivity (W/m·K) | Porosity (%) |
---|---|---|---|---|---|---|
3 | Hydrophobic | 100 | 20–100 | 788 | 0.020 | >90 |
No. | Aerogel | Sand | Cement | Water | FA | SF | WRA | AEA |
---|---|---|---|---|---|---|---|---|
AM0 | 0 | 1722.5 | 315 | 180 | 90 | 45 | 4.5 | 3.6 |
AM1 | 65 | 0 | 315 | 180 | 90 | 45 | 4.5 | 3.6 |
Compressive Strength (MPa) | Bond Strength (MPa) | Dry Density (kg/m3) | Water Resistance (h) | Moisture Resistance (h) | Freeze–Thaw Resistance (times) | Thermal Conductivity (W/m·K) | |
---|---|---|---|---|---|---|---|
AM0 | 22 | 2.4 | 1950 | ≥720 | ≥720 | ≥15 | 1.32 |
AM1 | 3.5 | 0.36 | 658 | ≥720 | ≥720 | ≥15 | 0.165 |
Standard Values | ≥1.5 | ≥0.15 | ≤700 | ≥720 | ≥720 | ≥15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zhu, P.; Yan, X.; Xu, X.; Wang, X. Exploring the Application Potential and Performance of SiO2 Aerogel Mortar in Various Tunnel High-Temperature Environments. Fire 2023, 6, 407. https://doi.org/10.3390/fire6100407
Chen H, Zhu P, Yan X, Xu X, Wang X. Exploring the Application Potential and Performance of SiO2 Aerogel Mortar in Various Tunnel High-Temperature Environments. Fire. 2023; 6(10):407. https://doi.org/10.3390/fire6100407
Chicago/Turabian StyleChen, Hongyun, Pinghua Zhu, Xiancui Yan, Xiaoyan Xu, and Xinjie Wang. 2023. "Exploring the Application Potential and Performance of SiO2 Aerogel Mortar in Various Tunnel High-Temperature Environments" Fire 6, no. 10: 407. https://doi.org/10.3390/fire6100407
APA StyleChen, H., Zhu, P., Yan, X., Xu, X., & Wang, X. (2023). Exploring the Application Potential and Performance of SiO2 Aerogel Mortar in Various Tunnel High-Temperature Environments. Fire, 6(10), 407. https://doi.org/10.3390/fire6100407