Characterization of Wildfires and Harvesting Forest Disturbances and Recovery Using Landsat Time Series: A Case Study in Mediterranean Forests in Central Italy
Abstract
:1. Introduction
- •
- simple disturbance;
- •
- disturbance followed by re-vegetation;
- •
- ongoing re-vegetation from a disturbance event occurred before the time period analyzed;
- •
- re-vegetation from prior disturbance to a stable state reached during the observation period.
- 1.
- Which is the most effective spectral variable regrowth trajectory to detect disturbances and recovery effects in the Mediterranean forests?
- 2.
- Are there any differences in the spectral trends and recovery conditions among the two classes of disturbances (i.e., clearcut and wildfire) captured by LTS analysis and all derived metrics? Can these differences be used to obtain a distinct profile for each disturbance?
2. Materials and Methods
2.1. Study Area
2.2. Landsat Time Series Data
2.3. Forest Types Classes
2.4. Disturbances Reference Geodatabase
2.5. Spectral Trajectory Extraction and Spectral Trajectory Fitting
2.6. Recovery NBR-Based Metrics
2.7. Classification Model
3. Results
3.1. Spectral Response of Bands and Indices
3.2. Characterizing Recovery with NBR-Based Metrics
3.3. Trajectories Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Satellite | Sensor | Processing Level | WRS2 Address | Acquisition Date | Collection | Tier | Product |
---|---|---|---|---|---|---|---|
Landsat 5 | TM | L1TP | 192/030 | 26 June 1999 | 01 | T1 | sr |
Landsat 5 | TM | L1TP | 192/030 | 15 August 2000 | 01 | T1 | sr |
Landsat 5 | TM | L1TP | 192/030 | 02 August 2001 | 01 | T1 | sr |
Landsat 5 | TM | L1TP | 192/030 | 18 June 2002 | 01 | T1 | sr |
Landsat 5 | TM | L1TP | 192/030 | 08 August 2003 | 01 | T1 | sr |
Landsat 5 | TM | L1TP | 192/030 | 07 June 2004 | 01 | T1 | sr |
Landsat 5 | TM | L1TP | 192/030 | 26 June 2005 | 01 | T1 | sr |
Landsat 5 | TM | L1TP | 192/030 | 13 June 2006 | 01 | T1 | sr |
Landsat 5 | TM | L1TP | 192/030 | 18 July 2007 | 01 | T1 | sr |
Landsat 5 | TM | L1TP | 192/030 | 21 August 2008 | 01 | T1 | sr |
Landsat 5 | TM | L1TP | 192/030 | 23 July 2009 | 01 | T1 | sr |
Landsat 5 | TM | L1TP | 192/030 | 10 July 2010 | 01 | T1 | sr |
Landsat 5 | TM | L1TP | 192/030 | 27 June 2011 | 01 | T1 | sr |
Landsat 7 | ETM+ | L1TP | 192/030 | 08 August 2012 | 01 | T1 | sr |
Landsat 8 | OLI/TIRS | L1TP | 192/030 | 16 June 2013 | 01 | T1 | sr |
Landsat 8 | OLI/TIRS | L1TP | 192/030 | 06 August 2014 | 01 | T1 | sr |
Landsat 8 | OLI/TIRS | L1TP | 192/030 | 06 June 2015 | 01 | T1 | sr |
Landsat 8 | OLI/TIRS | L1TP | 192/030 | 27 August 2016 | 01 | T1 | sr |
Landsat 8 | OLI/TIRS | L1TP | 192/030 | 14 August 2017 | 01 | T1 | sr |
Landsat 8 | OLI/TIRS | L1TP | 192/030 | 17 August 2018 | 01 | T1 | sr |
Appendix B
Index Type | Spectral Index | Formula Used by USGS Processing |
---|---|---|
Greenness | Enhanced Vegetation Index (EVI) | Where: G = 2.5 C1 = 6 C2 = 7.5 L = 1 |
Greenness | Normalized Difference Vegetation Index (NDVI) | |
Greenness | Modified Soil Adjusted Vegetation Index (MSAVI) | |
Greenness | Soil Adjusted Vegetation Index (SAVI) | Where: L = 0.5 |
Wetness | Normalized Burned Ratio (NBR) | |
Wetness | Normalized Burned Ratio 2 (NBR2) | |
Wetness | Normalized Difference Moisture Index (NDMI) |
References
- Rick, T.; Ontiveros, M.C.; Jerardino, A.; Mariotti, A.; Méndez, C.; Williams, A.N. Human-environmental interactions in Mediterranean climate regions from the Pleistocene to the Anthropocene. Anthropocene 2020, 31, 100253. [Google Scholar] [CrossRef]
- Fady-Welterlen, B. Is there really more biodiversity in Mediterranean forest ecosystems? Taxon 2005, 54, 905–910. [Google Scholar] [CrossRef]
- FAO; Plan Bleu. Food and Agriculture Organization State of Mediterranean Forests 2018; FAO: Rome, Italy, 2018; ISBN 978-92-5-131047-2. [Google Scholar]
- Médail, F.; Monnet, A.-C.; Pavon, D.; Nikolic, T.; Dimopoulos, P.; Bacchetta, G.; Arroyo, J.; Barina, Z.; Albassatneh, M.C.; Domina, G.; et al. What is a tree in the Mediterranean Basin hotspot? A critical analysis. For. Ecosyst. 2019, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Loo, J.A. The role of forest in the preservation of biodiversity. In Forests and Forest Plants; Owens, J.N., Gyde Lund, H., Eds.; EOLSS Publishers: Oxford, UK, 2009; Volume 3, p. 364. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y. (Eds.) IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Volume 9781107057. [Google Scholar]
- Dale, V.H.; Joyce, L.A.; Mcnulty, S.; Ronald, P.; Matthew, P. Climate Change and Forest Disturbances. Bioscience 2001, 51, 723–734. [Google Scholar] [CrossRef] [Green Version]
- Chirici, G.; Giannetti, F.; McRoberts, R.E.; Travaglini, D.; Pecchi, M.; Maselli, F.; Chiesi, M.; Corona, P. Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2020, 84, 101959. [Google Scholar] [CrossRef]
- Chirici, G.; Bottalico, F.; Giannetti, F.; Del Perugia, B.; Travaglini, D.; Nocentini, S.; Kutchartt, E.; Marchi, E.; Foderi, C.; Fioravanti, M.; et al. Assessing forest windthrow damage using single-date, post-event airborne laser scanning data. Forestry 2018, 91, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Puletti, N.; Bascietto, M. Towards a Tool for Early Detection and Estimation of Forest Cuttings by Remotely Sensed Data. Land 2019, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Pecchi, M.; Marchi, M.; Burton, V.; Giannetti, F.; Moriondo, M.; Bernetti, I.; Bindi, M.; Chirici, G. Species distribution modelling to support forest management. A literature review. Ecol. Model. 2019, 411, 108817. [Google Scholar] [CrossRef]
- White, J.; Wulder, M.; Hermosilla, T.; Coops, N.C.; Hobart, G.W. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens. Environ. 2017, 194, 303–321. [Google Scholar] [CrossRef]
- Viana-Soto, A.; Aguado, I.; Salas, J.; García, M. Identifying Post-Fire Recovery Trajectories and Driving Factors Using Landsat Time Series in Fire-Prone Mediterranean Pine Forests. Remote Sens. 2020, 12, 1499. [Google Scholar] [CrossRef]
- Michetti, M.; Pinar, M. Forest Fires Across Italian Regions and Implications for Climate Change: A Panel Data Analysis. Environ. Resour. Econ. 2019, 72, 207–246. [Google Scholar] [CrossRef] [Green Version]
- Bergmeier, E.; Capelo, J.; Di Pietro, R.; Guarino, R.; Kavgacı, A.; Loidi, J.; Tsiripidis, I.; Xystrakis, F. ‘Back to the Future’—Oak wood-pasture for wildfire prevention in the Mediterranean. Plant Sociol. 2021, 58, 41–48. [Google Scholar] [CrossRef]
- Romano, N.; Ursino, N. Forest Fire Regime in a Mediterranean Ecosystem: Unraveling the Mutual Interrelations between Rainfall Seasonality, Soil Moisture, Drought Persistence, and Biomass Dynamics. Fire 2020, 3, 49. [Google Scholar] [CrossRef]
- Trucchia, A.; Meschi, G.; Fiorucci, P.; Gollini, A.; Negro, D. Defining Wildfire Susceptibility Maps in Italy for Understanding Seasonal Wildfire Regimes at the National Level. Fire 2022, 5, 30. [Google Scholar] [CrossRef]
- Fernández-García, V.; Marcos, E.; Huerta, S.; Calvo, L. Soil-vegetation relationships in Mediterranean forests after fire. For. Ecosyst. 2021, 8, 18. [Google Scholar] [CrossRef]
- Enríquez-De-Salamanca, Á. Carbon versus Timber Economy in Mediterranean Forests. Atmosphere 2021, 12, 746. [Google Scholar] [CrossRef]
- Francini, S.; McRoberts, R.E.; D’Amico, G.; Coops, N.C.; Hermosilla, T.; White, J.C.; Wulder, M.A.; Marchetti, M.; Mugnozza, G.S.; Chirici, G. An open science and open data approach for the statistically robust estimation of forest disturbance areas. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2022, 106, 102663. [Google Scholar] [CrossRef]
- Chirici, G.; Giannetti, F.; Mazza, E.; Francini, S.; Travaglini, D.; Pegna, R.; White, J.C. Monitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with Landsat time series. Ann. For. Sci. 2020, 77, 40. [Google Scholar] [CrossRef]
- Giannetti, F.; Pegna, R.; Francini, S.; McRoberts, R.; Travaglini, D.; Marchetti, M.; Mugnozza, G.S.; Chirici, G. A New Method for Automated Clearcut Disturbance Detection in Mediterranean Coppice Forests Using Landsat Time Series. Remote Sens. 2020, 12, 3720. [Google Scholar] [CrossRef]
- Bottalico, F.; Travaglini, D.; Chirici, G.; Marchetti, M.; Marchi, E.; Nocentini, S.; Corona, P. Classifying silvicultural systems (coppices vs. high forests) in Mediterranean oak forests by Airborne Laser Scanning data. Eur. J. Remote Sens. 2014, 47, 437–460. [Google Scholar] [CrossRef] [Green Version]
- Forest Europe. State of Europe’s Forests. 2015. Available online: https://foresteurope.org/state-europes-forests-2020/ (accessed on 15 June 2021).
- European Environment Agency. Streamlining European Biodiversity Indicators 2020: Building a Future on Lessons Learnt from the SEBI 2010 Process; European Environment Agency: Copenhagen, Denmark, 2012.
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannetti, F.; Pecchi, M.; Travaglini, D.; Francini, S.; D’Amico, G.; Vangi, E.; Cocozza, C.; Chirici, G. Estimating VAIA Windstorm Damaged Forest Area in Italy Using Time Series Sentinel-2 Imagery and Continuous Change Detection Algorithms. Forests 2021, 12, 680. [Google Scholar] [CrossRef]
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in Remote Sensing to Forest Ecology and Management. One Earth 2020, 2, 405–412. [Google Scholar] [CrossRef]
- Decuyper, M.; Chávez, R.O.; Lohbeck, M.; Lastra, J.A.; Tsendbazar, N.; Hackländer, J.; Herold, M.; Vågen, T.-G. Continuous monitoring of forest change dynamics with satellite time series. Remote Sens. Environ. 2022, 269, 112829. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Francini, S.; McRoberts, R.E.; Giannetti, F.; Mencucci, M.; Marchetti, M.; Mugnozza, G.S.; Chirici, G. Near-real time forest change detection using PlanetScope imagery. Eur. J. Remote Sens. 2020, 53, 233–244. [Google Scholar] [CrossRef]
- Hirschmugl, M.; Gallaun, H.; Dees, M.; Datta, P.; Deutscher, J.; Koutsias, N.; Schardt, M. Methods for Mapping Forest Disturbance and Degradation from Optical Earth Observation Data: A Review. Curr. For. Rep. 2017, 3, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.E.; Andréfouët, S.; Cohen, W.B.; Gómez, C.; Griffiths, P.; Hais, M.; Healey, S.P.; Helmer, E.H.; Hostert, P.; Lyons, M.B.; et al. Bringing an ecological view of change to Landsat-based remote sensing. Front. Ecol. Environ. 2014, 12, 339–346. [Google Scholar] [CrossRef]
- De Keersmaecker, W.; Rodríguez-Sánchez, P.; Milencović, M.; Herold, M.; Reiche, J.; Verbesselt, J. Evaluating recovery metrics derived from optical time series over tropical forest ecosystems. Remote Sens. Environ. 2022, 274. [Google Scholar] [CrossRef]
- Wu, L.; Li, Z.; Liu, X.; Zhu, L.; Tang, Y.; Zhang, B.; Xu, B.; Liu, M.; Meng, Y.; Liu, B. Multi-Type Forest Change Detection Using BFAST and Monthly Landsat Time Series for Monitoring Spatiotemporal Dynamics of Forests in Subtropical Wetland. Remote Sens. 2020, 12, 341. [Google Scholar] [CrossRef] [Green Version]
- Esteban, J.; Fernández-Landa, A.; Tomé, J.L.; Gómez, C.; Marchamalo, M. Identification of Silvicultural Practices in Mediterranean Forests Integrating Landsat Time Series and a Single Coverage of ALS Data. Remote Sens. 2021, 13, 3611. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Cohen, W.B.; Schroeder, T.A. Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens. Environ. 2007, 110, 370–386. [Google Scholar] [CrossRef]
- Oeser, J.; Pflugmacher, D.; Senf, C.; Heurich, M.; Hostert, P. Using Intra-Annual Landsat Time Series for Attributing Forest Disturbance Agents in Central Europe. Forests 2017, 8, 251. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.; White, J.; Coops, N.; Hobart, G.W. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sens. Environ. 2015, 170, 121–132. [Google Scholar] [CrossRef]
- Pesaresi, S.; Galdenzi, D.; Biondi, E.; Casavecchia, S. Bioclimate of Italy: Application of the worldwide bioclimatic classification system. J. Maps 2014, 10, 538–553. [Google Scholar] [CrossRef]
- Broncano, M.J.; Retana, J.; Rodrigo, A. Predicting the Recovery of Pinus halepensis and Quercus ilex Forests after a Large Wildfire in Northeastern Spain. Plant Ecol. 2005, 180, 47–56. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Vega, J.A.; Jiménez, E.; Rigolot, E. Fire resistance of European pines. For. Ecol. Manag. 2008, 256, 246–255. [Google Scholar] [CrossRef]
- Giannetti, F.; Barbati, A.; Mancini, L.D.; Travaglini, D.; Bastrup-Birk, A.; Canullo, R.; Nocentini, S.; Chirici, G. European Forest Types: Toward an automated classification. Ann. For. Sci. 2018, 75, 6. [Google Scholar] [CrossRef] [Green Version]
- Barbati, A.; Marchetti, M.; Chirici, G.; Corona, P. European Forest Types and Forest Europe SFM indicators: Tools for monitoring progress on forest biodiversity conservation. For. Ecol. Manag. 2014, 321, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Alivernini, A.; Fares, S.; Ferrara, C.; Chianucci, F. An objective image analysis method for estimation of canopy attributes from digital cover photography. Trees 2018, 32, 713–723. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Benson, N.; Key, C.H.; Northern, U.; Mountain, R.; Benson, N.C.; Glacier, U.; Park, N. Measuring and remote sensing of burn severity: The CBI and NBR. In Proceedings of the Proceedings Joint Fire Science Conference and Workshop, Boise, ID, USA, 15–17 June 1999; Volume II. [Google Scholar]
- Key, C.H.; Benson, N.C. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index; and Remote Sensing of Severity, the Normalized Burn Ratio; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2006.
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- D’Amico, G.; Vangi, E.; Francini, S.; Giannetti, F.; Nicolaci, A.; Travaglini, D.; Massai, L.; Giambastiani, Y.; Terranova, C.; Chirici, G. Are We Ready for a Web-Based National Forest Information System? State of the Art of for-Est Maps and Airborne Laser Scanning Data Availability in Italy. iForest-Biogeosci. For. 2021, 14, 144–154. [Google Scholar] [CrossRef]
- Arrigoni, P.V.; Raffaelli, M.; Rizzotto, M.; Selvi, F.; Foggi, B.; Viciani, D.; Lombardi, L.; Benesperi, R.; Ferretti, G.; Benucci, S.; et al. Carta Della Vegetazione Forestale Della Regione Toscana. Scala 1:250.000; SELCA: Firenze, Italy, 1999. [Google Scholar]
- Arma dei Carabinieri—Database Comando Unità per la Tutela Forestale Ambientale e Agroalimentare Catasto Incendi; Ufficio Logistico—2^ Sezione Sistemi Informativi Automatizzati e TLC via Carducci 5—00187 Roma—available by request to [email protected]. 2018. Available online: http://www.simontagna.it/portalesim/catastoincendi.jsp?pid=4093 (accessed on 15 June 2021).
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Hagolle, O.; Lobo, A.; Maisongrande, P.; Cabot, F.; Duchemin, B.; De Pereyra, A. Quality assessment and improvement of temporally composited products of remotely sensed imagery by combination of VEGETATION 1 and 2 images. Remote Sens. Environ. 2005, 94, 172–186. [Google Scholar] [CrossRef] [Green Version]
- Ju, J.; Roy, D.P.; Shuai, Y.; Schaaf, C. Development of an approach for generation of temporally complete daily nadir MODIS reflectance time series. Remote Sens. Environ. 2010, 114, 1–20. [Google Scholar] [CrossRef]
- Moisen, G.G.; Meyer, M.C.; Schroeder, T.A.; Liao, X.; Schleeweis, K.G.; Freeman, E.A.; Toney, J.C. Shape selection in Landsat time series: A tool for monitoring forest dynamics. Glob. Chang. Biol. 2016, 22, 3518–3528. [Google Scholar] [CrossRef] [PubMed]
- Viedma, O.; Meliá, J.; Segarra, D.; Haro, F.J.G. Modeling rates of ecosystem recovery after fires by using landsat TM data. Remote Sens. Environ. 1997, 61, 383–398. [Google Scholar] [CrossRef]
- Senf, C.; Pflugmacher, D.; Wulder, M.A.; Hostert, P. Characterizing spectral–temporal patterns of defoliator and bark beetle disturbances using Landsat time series. Remote Sens. Environ. 2015, 170, 166–177. [Google Scholar] [CrossRef]
- Masek, J.G.; Huang, C.; Wolfe, R.; Cohen, W.; Hall, F.; Kutler, J.; Nelson, P. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ. 2008, 112, 2914–2926. [Google Scholar] [CrossRef]
- Guo, J.; Gong, P. The Potential of Spectral Indices in Detecting Various Stages of Afforestation over the Loess Plateau Region of China. Remote Sens. 2018, 10, 1492. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; White, J.; Wulder, M.A. Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation. Remote Sens. Environ. 2011, 115, 1665–1679. [Google Scholar] [CrossRef]
- Pickell, P.D.; Hermosilla, T.; Frazier, R.J.; Coops, N.; Wulder, M. Forest recovery trends derived from Landsat time series for North American boreal forests. Int. J. Remote Sens. 2016, 37, 138–149. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B.; Pfaff, E.; Braaten, J.; Nelson, P. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ. 2012, 122, 117–133. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Gitas, I.; Katagis, T.; Polychronaki, A.; Somers, B.; Goossens, R. Assessing post-fire vegetation recovery using red–near infrared vegetation indices: Accounting for background and vegetation variability. ISPRS J. Photogramm. Remote Sens. 2012, 68, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, J.F.; Chapin, F.S., III; Foote, J.; Kemmett, S.; Price, K.; Viereck, L. Decadal observations of tree regeneration following fire in boreal forests. Can. J. For. Res. 2004, 34, 267–273. [Google Scholar] [CrossRef]
- White, J.C.; Hermosilla, T.; Wulder, M.A.; Coops, N.C. Mapping, validating, and interpreting spatio-temporal trends in post-disturbance forest recovery. Remote Sens. Environ. 2022, 271, 112904. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Strobl, C.; Boulesteix, A.-L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinform. 2007, 8, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, T.; Guo, X.; Takeda, K. Remote Sensing Approach to Detect Post-Fire Vegetation Regrowth in Siberian Boreal Larch Forest; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; Volume 62, ISBN 1470-160X. [Google Scholar]
- Vila, J.P.S.; Barbosa, P. Post-fire vegetation regrowth detection in the Deiva Marina region (Liguria-Italy) using Landsat TM and ETM+ data. Ecol. Model. 2010, 221, 75–84. [Google Scholar] [CrossRef]
- Cohen, W.B.; Healey, S.P.; Yang, Z.; Zhu, Z.; Gorelick, N. Diversity of Algorithm and Spectral Band Inputs Improves Landsat Monitoring of Forest Disturbance. Remote Sens. 2020, 12, 1673. [Google Scholar] [CrossRef]
- Storey, E.A.; Stow, D.A.; O’Leary, J.F. Assessing postfire recovery of chamise chaparral using multi-temporal spectral vegetation index trajectories derived from Landsat imagery. Remote Sens. Environ. 2016, 183, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Woodcock, C. Monitoring forest succession with multitemporal landsat images: Factors of uncertainty. IEEE Trans. Geosci. Remote Sens. 2013, 41, 2557–2567. [Google Scholar] [CrossRef]
- Morresi, D.; Vitali, A.; Urbinati, C.; Garbarino, M. Forest Spectral Recovery and Regeneration Dynamics in Stand-Replacing Wildfires of Central Apennines Derived from Landsat Time Series. Remote Sens. 2019, 11, 308. [Google Scholar] [CrossRef] [Green Version]
- White, J.C.; Saarinen, N.; Kankare, V.; Wulder, M.; Hermosilla, T.; Coops, N.C.; Pickell, P.D.; Holopainen, M.; Hyyppä, J.; Vastaranta, M. Confirmation of post-harvest spectral recovery from Landsat time series using measures of forest cover and height derived from airborne laser scanning data. Remote Sens. Environ. 2018, 216, 262–275. [Google Scholar] [CrossRef]
- Brown, M.L.; Canham, C.D.; Murphy, L.; Donovan, T.M. Timber harvest as the predominant disturbance regime in northeastern U.S. forests: Effects of harvest intensification. Ecosphere 2018, 9, e02062. [Google Scholar] [CrossRef]
- Nitschke, C.R. Does forest harvesting emulate fire disturbance? A comparison of effects on selected attributes in coniferous-dominated headwater systems. For. Ecol. Manag. 2005, 214, 305–319. [Google Scholar] [CrossRef]
- Naveh, Z. Effects of fire in Mediterranean Region. In Fire and Ecosystems; Kozlowski, T.T., Ahlgren, C.E., Eds.; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Hoffmann, A. I tipi forestali. In Boschi e Macchie di Toscana; Region, T., Ed.; Giunta Regionale: Firenze, Italy, 1998. [Google Scholar]
- Qiu, J.; Wang, H.; Shen, W.; Zhang, Y.; Su, H.; Li, M. Quantifying Forest Fire and Post-Fire Vegetation Recovery in the Daxin’ anling Area of Northeastern China Using Landsat Time-Series Data and Machine Learning. Remote Sens. 2021, 13, 792. [Google Scholar] [CrossRef]
Forest Type | Undisturbed Areas | Harvesting | Wildfires | Total | ||||
---|---|---|---|---|---|---|---|---|
Pre-correction | Post-correction | Pre-correction | Post-correction | Pre-correction | Post-correction | Pre-correction | Post-correction | |
Abies alba (Silver fir) | 0 | 0 | 18 | 0 | 0 | 0 | 18 | 0 |
Alnus glutinosa (Common alder) | 224 | 0 | 277 | 229 | 26 | 0 | 527 | 229 |
Castanea sativa (Sweet chestnut) | 2289 | 1372 | 4904 | 2962 | 6254 | 1348 | 13,447 | 5682 |
Cupressus sempervirens (Mediterranean cypress) | 554 | 334 | 178 | 75 | 252 | 171 | 984 | 580 |
Fagus sylvatica (European beech) | 0 | 0 | 53 | 0 | 3006 | 0 | 3059 | 0 |
Maquis formations | 485 | 0 | 1262 | 807 | 1971 | 1002 | 3718 | 1809 |
Mixed plantations of non-native species | 0 | 0 | 478 | 338 | 78 | 0 | 556 | 338 |
Montane shrubs (Juniperus, Prunus, Spartium spp.) | 701 | 508 | 2616 | 1866 | 1165 | 0 | 4482 | 2374 |
Ostrya carpinifolia (European hop-hornbeam) | 1914 | 1530 | 6124 | 4095 | 2388 | 0 | 10,426 | 5625 |
Pinus nigra (Black pine) | 178 | 136 | 223 | 96 | 133 | 10 | 534 | 242 |
Pinus pinaster (Maritime pine) | 252 | 161 | 1171 | 638 | 11,225 | 5177 | 12,648 | 5976 |
Pinus pinea (Stone pine) | 393 | 0 | 96 | 69 | 610 | 471 | 1099 | 540 |
Pseudotsuga menziesii (Douglas fir) | 0 | 0 | 88 | 52 | 0 | 0 | 88 | 52 |
Quercus cerris (Turkey oak) | 8755 | 5661 | 54,224 | 37,496 | 1798 | 628 | 64,777 | 43,785 |
Quercus ilex (Holm oak) | 15,184 | 9995 | 19,492 | 11,584 | 3793 | 1087 | 38,469 | 22,666 |
Quercus pubescens (Downy oak) | 947 | 631 | 2915 | 1753 | 4233 | 1735 | 8095 | 4119 |
Quercus suber (Cork oak) | 190 | 0 | 846 | 552 | 47 | 28 | 1083 | 580 |
Robinia pseudoacacia (Black locust) | 165 | 0 | 0 | 0 | 761 | 293 | 926 | 293 |
Total | 32,231 | 20,328 | 94,965 | 62,612 | 37,740 | 11,950 | 164,936 | 94,890 |
Metric | Description |
---|---|
Mean pre-disturbance | Arithmetic mean of spectral values before the change event |
Standard deviation pre-disturbance | Standard deviation of spectral values before the change event |
Slope pre-disturbance | Direction and steepness of the trajectory before the change event |
ΔNBR pre-disturbance | Arithmetic mean of the first two years before the change event |
ΔNBR disturbance | Or magnitude of the event, absolute change in NBR value |
ΔNBR regrowth | Absolute difference between NBR values five years after the change event and NBR values of the change event |
Recovery Index (RI) | ΔNBR regrowth / ΔNBR disturbance |
First year post-disturbance | Spectral value recorded in the first year after the change event |
Mean post-disturbance | Arithmetic mean of spectral values after the change event |
Standard deviation post-disturbance | Standard deviation of spectral values after the change event |
Slope post-disturbance | Direction and steepness of the trajectory after the change event |
Landsat Spectral Bands | Absolute Change in Mean | |
---|---|---|
Harvesting | Wildfires | |
Blue | 0.0123 | 0.0050 |
Green | 0.0163 | 0.0037 |
NIR | 0.0537 | 0.0360 |
Red | 0.0336 | 0.0132 |
SWIR 1 | 0.0681 | 0.0184 |
SWIR 2 | 0.0671 | 0.0384 |
Landsat spectral index | ||
EVI | 0.2245 | 0.1250 |
MSAVI | 0.2181 | 0.1152 |
NBR | 0.3710 | 0.2645 |
NBR2 | 0.1746 | 0.1233 |
NDMI | 0.3144 | 0.1947 |
NDVI | 0.2417 | 0.1706 |
SAVI | 0.1847 | 0.1149 |
ΔNBRregrowth | RI | Y2R80% | Description | Proportion of Disturbed Pixels for the Harvesting Class | Proportion of Disturbed Pixels for the Wildfires Class |
---|---|---|---|---|---|
+ | + | + | Recovery indicated by all 3 metrics | 99.752 | 76.510 |
+ | + | - | Short-term recovery indicated; long-term recovery not attained by 2018 | 0.072 | 22.166 |
+ | - | + | Recovery indicated by ∆NBRregrowth and Y2R | 0.000 | 0.000 |
+ | - | - | Recovery indicated by ΔNBRregrowth only | 0.000 | 0.000 |
- | + | + | Recovery indicated by RI and Y2R | 0.000 | 0.000 |
- | + | - | Recovery indicated by RI only | 0.000 | 0.000 |
- | - | + | Long-term recovery indicated | 0.176 | 0.493 |
- | - | - | No recovery was indicated by any of the metrics | 0.000 | 2.241 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonannella, C.; Chirici, G.; Travaglini, D.; Pecchi, M.; Vangi, E.; D’Amico, G.; Giannetti, F. Characterization of Wildfires and Harvesting Forest Disturbances and Recovery Using Landsat Time Series: A Case Study in Mediterranean Forests in Central Italy. Fire 2022, 5, 68. https://doi.org/10.3390/fire5030068
Bonannella C, Chirici G, Travaglini D, Pecchi M, Vangi E, D’Amico G, Giannetti F. Characterization of Wildfires and Harvesting Forest Disturbances and Recovery Using Landsat Time Series: A Case Study in Mediterranean Forests in Central Italy. Fire. 2022; 5(3):68. https://doi.org/10.3390/fire5030068
Chicago/Turabian StyleBonannella, Carmelo, Gherardo Chirici, Davide Travaglini, Matteo Pecchi, Elia Vangi, Giovanni D’Amico, and Francesca Giannetti. 2022. "Characterization of Wildfires and Harvesting Forest Disturbances and Recovery Using Landsat Time Series: A Case Study in Mediterranean Forests in Central Italy" Fire 5, no. 3: 68. https://doi.org/10.3390/fire5030068
APA StyleBonannella, C., Chirici, G., Travaglini, D., Pecchi, M., Vangi, E., D’Amico, G., & Giannetti, F. (2022). Characterization of Wildfires and Harvesting Forest Disturbances and Recovery Using Landsat Time Series: A Case Study in Mediterranean Forests in Central Italy. Fire, 5(3), 68. https://doi.org/10.3390/fire5030068