Hybrid Dielectric Barrier Discharge Reactor: Production of Reactive Oxygen–Nitrogen Species in Humid Air
Abstract
1. Introduction
2. Materials and Methods
2.1. Setup
2.2. Air Humidification
2.3. Special Gases
2.4. FTIR Measurement
2.5. UV Absorption Measurement
2.6. PAW Production and Characterization
3. Results and Discussion
3.1. Thermal Considerations
3.1.1. Temperature Difference
3.1.2. Heat Transfer
3.1.3. Influence on Humidity
3.2. Expected Molecular Species
3.3. FTIR Spectra for Test Gases
3.4. FTIR Characterization for CDA
3.4.1. Specific Energy Input
3.4.2. FTIR Spectra for CDA
3.4.3. Comparison of FTIR and UV Absorption for Ozone
3.4.4. Influence of Power on Production
3.5. FTIR Characterization for Humidified Air
3.5.1. FTIR Spectra for Humidified Air
3.5.2. Concentration
3.5.3. FTIR Spectrum of
3.6. Plasma-Activated Water Production
3.6.1. NOx Production
- •
- Only species are considered.
- •
- All species dissolve as a strong acid.
- •
- The water volume is constant at 12.5 mL, and it does not change due to subsequent reactions.
- •
- The amount of circulating air is constant, equal to 1.1 L.
- •
- Ideal gas behavior at standard pressure is assumed.
- •
- The acidity of PAW is caused by nitric acid.
3.6.2. Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Alternating current |
APP | Atmospheric pressure plasma |
APPJ | Atmospheric pressure plasma jet |
CAPP | Cold atmospheric pressure plasma |
CDA | Compressed dry air |
DBD | Dielectric barrier discharge |
DC FTIR | Fourier-transform infrared spectroscopy |
HDBD | Hybrid surface–volume DBD |
HV | High voltage |
LIF | Laser-induced fluorescence |
MFC | Mass flow controller |
PAL | Plasma-activated liquid |
PAW | Plasma-activated water |
pH | Potential of hydrogen—a measure of the fluid acidity |
PDD | Piezoelectric direct discharge |
PWM | Pulse width modulation |
RONS | Reactive oxygen–nitrogen species |
SDBD | Surface dielectric barrier discharge |
SEI | Specific energy input |
SLM | Standard liter per minute |
UV | Ultraviolet light |
VDBD | Volume dielectric barrier discharge |
References
- du Moncel, T. Notice sur l’Appareil d’Induction Electrique de Ruhmkorff et sur les Experiences que l’On Peut Faire Avec cet Instrument, 1st ed.; Hachette et Cie Publishers: Paris, France, 1855. [Google Scholar]
- Siemens, W. Über die elektrostatische Induktion und die Verzögerung des Stroms in Flaschendrähten. Ann. Phys. Chem. Vierte Reihe 1957, 12, 66–122. [Google Scholar] [CrossRef]
- Kogelschatz, U.; Baessler, P. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 2003, 23, 1–45. [Google Scholar] [CrossRef]
- Mouele, E.S.M.; Tijani, J.O.; Badmus, K.O.; Pereao, O.; Babajide, O.; Fatoba, O.O.; Zhang, C.; Shao, T.; Sosnin, E.; Tarasenko, V.; et al. A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation. J. Environ. Chem. Eng. 2021, 9, 105758. [Google Scholar] [CrossRef]
- Brandenburg, R.; Becker, K.H.; Weltmann, K.D. Barrier discharges in science and technology since 2003: A tribute and update. Plasma Chem. Plasma Process. 2023, 43, 1303–1334. [Google Scholar] [CrossRef]
- Kim, H.H.; Abdelaziz, A.A.; Teramoto, Y.; Nozaki, T.; Kim, D.Y.; Brandenburg, R.; Schiorlin, M.; Hensel, K.; Song, Y.H.; Lee, D.H.; et al. Revisiting why DBDs can generate O3 against the thermodynamic limit. Int. J. Plasma Environ. Sci. Technol. 2023, 17, 1. [Google Scholar] [CrossRef]
- Meyer, C.; Müller, S.; Gurevicha, E.L.; Franzke, J. Dielectric barrier discharges in analytical chemistry. Analyst 2011, 136, 2427–2440. [Google Scholar] [CrossRef] [PubMed]
- Adesina, K.; Lin, T.C.; Huang, Y.W.; Locmelis, M.; Han, D. A review of dielectric barrier discharge cold atmospheric plasma for surface sterilization and decontamination. IEEE Trans. Radiat. Plasma Med. Sci. 2024, 8, 295–306. [Google Scholar] [CrossRef]
- Kogelschatz, U.; Akishev, Y.S.; Napratovich, A.P. History of non-equilibrium air discharges. In Non-Equilibrium Air Plasmas at Atmospheric Pressure; Becker, K.H., Kogelschatz, U., Schoenbach, K.H., Barker, R.J., Eds.; IoP—Institute of Physics Publishing: Bristol, UK; Philadelphia, PA, USA, 2005; Chapter 2; pp. 17–75. [Google Scholar]
- Gulec, A.; Oksuz, L.; Hershkowitz, N. Optical studies of dielectric barrier plasma aerodynamic actuators. Plasma Sources Sci. Technol. 2011, 20, 045019. [Google Scholar] [CrossRef]
- Masuda, S.; Akutsu, K.; Kuroda, M.; Awatsu, Y.; Shibuya, Y. A ceramic-based ozonizer using high-frequency discharge. IEEE Trans. Ind. Appl. 1988, 24, 223–231. [Google Scholar] [CrossRef]
- Shimizu, T.; Sakiyama, Y.; Graves, D.B.; Zimmermann, J.L.; Morfill, G.E. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure. New J. Phys. 2012, 14, 103028. [Google Scholar] [CrossRef]
- Brandenburg, R. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 2017, 26, 053001. [Google Scholar] [CrossRef]
- Govaert, M.; Smet, C.; Walsh, L.J.; Van Impe, J.F.M. Influence of plasma characteristics on the inactivation mechanism of cold atmospheric plasma (CAP) for Listeria monocytogenes and Salmonella typhimurium biofilms. Appl. Sci. 2020, 10, 3198. [Google Scholar] [CrossRef]
- Nassour, K.; Brahami, M.; Nemmich, S.; Hammadi, N.; Tilmatine, A.; Zouzou, N. A new hybrid surface-volume dielectric barrier discharge reactor for ozone generation. In Proceedings of the 2015 IEEE Industry Applications Society Annual Meeting, Addison, TX, USA, 18–22 October 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Nassour, K.; Brahami, M.; Nemmich, S.; Hammadi, N.; Zouzou, N.; Tilmatine, A. New hybrid surface–volume dielectric barrier discharge reactor for ozone generation. IEEE Trans. Ind. Appl. 2017, 53, 2477–2484. [Google Scholar] [CrossRef]
- Lu, X.; Fang, Z.; Dai, D.; Shao, T.; Liu, F.; Zhang, C.; Liu, D.; Nie, L.; Jiang, C. On the chronological understanding of the homogeneous dielectric barrier discharge. High Volt. 2023, 8, 1132–1150. [Google Scholar] [CrossRef]
- Korzec, D.; Freund, F.; Bäuml, C.; Penzkofer, P.; Nettesheim, S. Hybrid dielectric barrier discharge reactor: Characterization for ozone production. Plasma 2024, 7, 585–615. [Google Scholar] [CrossRef]
- Graves, D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012, 45, 263001. [Google Scholar] [CrossRef]
- Machala, Z.; Tarabová, B.; Sersenová, D.; Janda, M.; Hensel, K. Chemical and antibacterial effects of plasma activated water: Correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J. Phys. D Appl. Phys. 2018, 52, 034002. [Google Scholar] [CrossRef]
- Ozkan, A.; Dufour, T.; Arnoult, G.; De Keyzer, P.; Bogaerts, A.; Reniers, F. CO2–CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge. J. CO2 Util. 2015, 9, 74–81. [Google Scholar] [CrossRef]
- Gibalov, V.I.; Pietsch, G.J. On the performance of ozone generators working with dielectric barrier discharges. Ozone Sci. Eng. 2006, 28, 119–124. [Google Scholar] [CrossRef]
- Becker, H. Über die Extrapolation und Berechnung der Konzentration und Ausbeute von Ozonapparaten. In Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern: Erster Band 1920–1922; Harries, C.D., Ed.; Springer: Berlin/Heidelberg, Germany, 1922; pp. 76–106. [Google Scholar] [CrossRef]
- Maskell, B.R. The Effect of Humidity on a Corona Discharge in Air; Technical Report 70106; Royal Aircraft Establishment: Farnborough, UK, 1970; Available online: https://apps.dtic.mil/sti/citations/AD0720090 (accessed on 2 July 2025).
- Chen, J.; Wang, P. Effect of relative humidity on electron distribution and ozone production by DC coronas in air. IEEE Trans. Plasma Sci. 2005, 33, 808–812. [Google Scholar] [CrossRef]
- Cimerman, R.; Hensel, K. Multi-hollow surface dielectric barrier discharge: Production of gaseous species under various air flow rates and relative humidities. Plasma Chem. Plasma Process. 2023, 43, 1411–1433. [Google Scholar] [CrossRef]
- Hähnel, M.; von Woedtke, T.; Weltmann, K.D. Influence of the air humidity on the reduction of Bacillus Spores in a Defined Environment at Atmospheric Pressure Using a Dielectric Barrier Surface Discharge. Plasma Process. Polym. 2010, 7, 244–249. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.C.; Liu, F.; Fang, Z. Influence of high-voltage electrode arrangement on downstream uniformity of jet array. IEEE Trans. Plasma Sci. 2019, 47, 1926–1932. [Google Scholar] [CrossRef]
- Pierotti, G.; Popoli, A.; Pintassilgo, C.D.; Cristofolini, A. Modeling study of chemical kinetics and vibrational excitation in a volumetric DBD in humid air at atmospheric pressure. Plasma Chem. Plasma Process. 2024, 44, 1575–1594. [Google Scholar] [CrossRef]
- Sakiyama, Y.; Graves, D.B.; Chang, H.W.; Shimizu, T.; Morfill, G.E. Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. J. Phys. D Appl. Phys. 2012, 45, 1–19. [Google Scholar] [CrossRef]
- Kruszelnicki, J.; Lietz, A.M.; Kushner, M.J. Atmospheric pressure plasma activation of water droplets. J. Phys. D Appl. Phys. 2019, 52, 355207. [Google Scholar] [CrossRef]
- Locke, B.R.; Shih, K.Y. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sources Sci. Technol. 2011, 20, 034006. [Google Scholar] [CrossRef]
- Dolan, T.J. Electron and ion collisions with water vapour. J. Phys. D Appl. Phys. 1993, 26, 4–8. [Google Scholar] [CrossRef]
- Itikawa, Y.; Mason, N. Cross sections for electron collisions with water molecules. J. Phys. Chem. Ref. Data 2005, 34, 1–22. [Google Scholar] [CrossRef]
- Marsalek, O.; Uhlig, F.; Frigato, T.; Schmidt, B.; Jungwirth, P. Dynamics of electron localization in warm versus cold water clusters. Phys. Rev. Lett. 2010, 105, 043002. [Google Scholar] [CrossRef]
- Frigato, T.; VandeVondele, J.; Schmidt, B.; Schütte, C.; Jungwirth, P. Ab initio molecular dynamics simulation of a medium-sized water cluster anion: From an interior to a surface-located excess electron via a delocalized state. J. Phys. Chem. A 2008, 112, 6125–6133. [Google Scholar] [CrossRef] [PubMed]
- Pokryvailo, A.; Yankelevich, Y.; Wolf, M.; Abramzon, E.; Wald, S.; Welleman, A. A high-power pulsed corona source for pollution control applications. IEEE Trans. Plasma Sci. 2004, 32, 2045–2054. [Google Scholar] [CrossRef]
- Pokryvailo, A.; Wolf, M.; Yankelevich, Y.; Wald, S.; Grabowski, L.; Van Veldhuizen, E.; Rutgers, W.; Reiser, M.; Glocker, B.; Eckhardt, T.; et al. High-power pulsed corona for treatment of pollutants in heterogeneous media. IEEE Trans. Plasma Sci. 2006, 34, 1731–1743. [Google Scholar] [CrossRef]
- Burlica, R.; Kirkpatrick, M.J.; Locke, B.R. Formation of reactive species in gliding arc discharges with liquid water. J. Electrost. 2006, 64, 35–43. [Google Scholar] [CrossRef]
- Burlica, R.; Locke, B.R. Pulsed plasma gliding-arc discharges with water spray. IEEE Trans. Ind. Appl. 2008, 44, 482–489. [Google Scholar] [CrossRef]
- Burlica, R.; Shih, K.Y.; Locke, B.R. Formation of H2 and H2O2 in a water-spray gliding arc nonthermal plasma reactor. Ind. Eng. Chem. Res. 2010, 49, 6342–6349. [Google Scholar] [CrossRef]
- Thevenet, F.; Couble, J.; Brandhorst, M.; Dubois, J.L.; Puzenat, E.; Guillard, C.; Bianchi, D. Synthesis of hydrogen peroxide using dielectric barrier discharge associated with fibrous materials. Plasma Chem. Plasma Process. 2010, 30, 489–502. [Google Scholar] [CrossRef]
- Grinevich, V.I.; Kvitkova, E.Y.; Plastinina, N.A.; Rybkin, V.V. Application of dielectric barrier discharge for waste water purification. Plasma Chem. Plasma Process. 2011, 31, 573–583. [Google Scholar] [CrossRef]
- Kovačević, V.V.; Dojčinović, B.P.; Jović, M.; Roglić, G.M.; Obradović, B.M.; Kuraica, M.M. Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres. J. Phys. D Appl. Phys. 2017, 50, 155205. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Luo, H.; Wang, X.; Tie, J.; Ren, Z. Sterilizing processes and mechanisms for treatment of Escherichia coli with Dielectric-Barrier Discharge Plasma. Appl. Environ. Microbiol. 2020, 86, e01907-19. [Google Scholar] [CrossRef]
- Nguyen, X.L.; Choi, Y.; Nguyen, H.L.; Yu, S. Reliability of vapor transport measurement in a hollow fiber membrane humidifier. Int. J. Heat Technol. 2024, 42, 71–78. [Google Scholar] [CrossRef]
- Zhao, B.; Peng, N.; Liang, C.; Yong, W.F.; Chung, T.S. Hollow fiber membrane dehumidification device for air conditioning system. Membranes 2015, 5, 722–738. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Shimizu, T.; Binder, S.; Rettberg, P.; Zimmermann, J.L.; Morfill, G.E.; Thomas, H. Plasma afterglow circulation apparatus for decontamination of spacecraft equipment. AIP Adv. 2018, 8, 105013. [Google Scholar] [CrossRef]
- Molina, L.T.; Molina, M.J. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range. J. Geophys. Res. 1986, 91, 14501–14508. [Google Scholar] [CrossRef]
- Daumont, D.; Brion, J.; Charbonnier, J.; Malicet, J. Ozone UV Spectroscopy I: Absorption cross-section at room temperautre. J. Atmos. Chem. 1992, 15, 145–155. [Google Scholar] [CrossRef]
- Smith, B.C. Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2011. [Google Scholar]
- Waskow, A.; Ibba, L.; Leftley, M.; Howling, A.; Ambrico, P.F.; Furno, I. An in situ FTIR Study of DBD plasma parameters for accelerated germination of Arabidopsis thaliana seeds. Int. J. Mol. Sci. 2021, 22, 11540. [Google Scholar] [CrossRef]
- Al-Abduly, A.; Christensen, P. An in situ and downstream study of non-thermal plasma chemistry in an air fed dielectric barrier discharge (DBD). Plasma Sources Sci. Technol. 2015, 24, 065006. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, M.; Liu, D.; Liu, L.; Wang, X.; Chen, J.; Guo, L.; Liu, Y.; Hou, M.; Rong, M. N2O5 in air discharge plasma: Energy-efficient production, maintenance factors and sterilization effects. J. Phys. D Appl. Phys. 2023, 56, 075204. [Google Scholar] [CrossRef]
- Insights into the reaction pathways and mechanism of NO removal by SDBD plasma via FT-IR measurements. Fuel Process. Technol. 2019, 186, 125–136. [CrossRef]
- Ibba, L.; Agus, R.; Avino, F.; Furno, I.; Ambrico, P.F. In-situ FTIR and laser induced fluorescence RONS characterization of atmospheric pressure nanosecond-pulsed surface DBD plasma for indirect treatments of E. coli. Plasma Chem. Plasma Process. 2024, 44, 785–805. [Google Scholar] [CrossRef]
- Tomeková, J.; Kyzek, S.; Medvecká, V.; Gálová, E.; Zahoranová, A. Influence of cold atmospheric pressure plasma on pea seeds: DNA damage of seedlings and optical diagnostics of plasma. Plasma Chem. Plasma Process. 2020, 40, 1571–1584. [Google Scholar] [CrossRef]
- Kimura, Y.; Takashima, K.; Sasaki, S.; Kaneko, T. Investigation on dinitrogen pentoxide roles on air plasma effluent exposure to liquid water solution. J. Phys. D Appl. Phys. 2018, 52, 064003. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; et al. Plasma–liquid interactions: A review and roadmap. Plasma Sources Sci. Technol. 2016, 25, 053002. [Google Scholar] [CrossRef]
- Białoszewski, D.; Bocian, E.; Bukowska, B.; Czajkowska, M.; Sokół-Leszczyńska, B.; Tyski, S. Antimicrobial activity of ozonated water. Med. Sci. Monit. 2010, 16, MT71–MT75. [Google Scholar] [PubMed]
- César, J.; Sumita, T.C.; Junqueira, J.C.; Jorge, A.O.C.; do Rego, M.A. Antimicrobial effects of ozonated water on the sanitization of dental instruments contaminated with E. coli, S. aureus, C. albicans, or the spores of B. atrophaeus. J. Infect. Public Health 2012, 5, 269–274. [Google Scholar] [CrossRef]
- Dhillon, B.; Wiesenborn, D.; Wolf-Hall, C.; Manthey, F. Development and evaluation of an ozonated water system for antimicrobial treatment of durum wheat. J. Food Sci. 2009, 74, E396–E403. [Google Scholar] [CrossRef] [PubMed]
- Hoigné, J. Mechanisms, rates and selectivites of oxidations of organic compounds initiate by ozonation of water. In Handbook of Ozone Technology and Applications; Rice, R., Netzer, A., Eds.; Ann Arbor Science Publishers: Ann Arbor, MI, USA, 1982; Chapter 12; Volume 1, pp. 341–379. [Google Scholar]
- Dev Kumar, G.; Ravishankar, S. Ozonized water with plant antimicrobials: An effective method to inactivate Salmonella enterica on iceberg lettuce in the produce wash water. Environ. Res. 2019, 171, 213–217. [Google Scholar] [CrossRef]
- Wu, J.; Luan, T.; Lan, C.; Lo, T.W.H.; Chan, G.Y.S. Removal of residual pesticides on vegetable using ozonated water. Food Control 2007, 18, 466–472. [Google Scholar] [CrossRef]
- Shainsky, N.; Dobrynin, D.; Ercan, U.; Joshi, S.; Ji, H.; Brooks, A.; Fridman, G.; Cho, Y.; Fridman, A.; Friedman, G. Non-equilibrium plasma treatment of liquids, formation of plasma acid. In Proceedings of the ISPC–20: 20th International Symposium on Plasma Chemistry, Philadelphia, PA, USA, 24–29 July 2011; pp. 1–4. [Google Scholar]
- Magureanu, M.; Piroi, D.; Gherendi, F.; Mandache, N.B.; Parvulescu, V. Decomposition of methylene blue in water by corona discharges. Plasma Chem. Plasma Process. 2008, 28, 677–688. [Google Scholar] [CrossRef]
- Shaji, M.; Rabinovich, A.; Surace, M.; Sales, C.; Fridman, A. Physical properties of plasma-activated water. Plasma 2023, 6, 45–57. [Google Scholar] [CrossRef]
- He, J.; Rabinovich, A.; Vainchtein, D.; Fridman, A.; Sales, C.; Shneider, M.N. Effects of plasma on physical properties of water: Nanocrystalline-to-amorphous phase transition and improving produce washing. Plasma 2022, 5, 462–469. [Google Scholar] [CrossRef]
- Zhai, Y.; Liu, S.; Xiang, Q.; Lyu, Y.; Shen, R. Effect of plasma-activated water on the microbial decontamination and food quality of thin sheets of bean curd. Appl. Sci. 2019, 9, 4223. [Google Scholar] [CrossRef]
- Verreycken, T.; Bruggeman, P.; Leys, C. Anode pattern formation in atmospheric pressure air glow discharges with water anode. J. Appl. Phys. 2009, 105, 083312. [Google Scholar] [CrossRef]
- Shen, J.; Sun, Q.; Zhang, Z.; Cheng, C.; Lan, Y.; Zhang, H.; Xu, Z.; Zhao, Y.; Xia, W.; Chu, P.K. Characteristics of DC gas-liquid phase atmospheric-pressure plasma and bacteria inactivation mechanism. Plasma Process. Polym. 2015, 12, 252–259. [Google Scholar] [CrossRef]
- Lu, P.; Boehm, D.; Bourke, P.; Cullen, P.J. Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Process. Polym. 2017, 14, 1600207. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, Y.; Feng, H.; Ma, R.; Tian, Y.; Zhang, J.; Fang, J. A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage. Appl. Phys. Lett. 2013, 102, 1–4. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, J.; Cheng, C.; Xu, Z.; Xia, W. Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water. Plasma Sci. Technol. 2018, 20, 044009. [Google Scholar] [CrossRef]
- van Gils, C.A.J.; Hofmann, S.; Boekema, B.K.H.L.; Brandenburg, R.; Bruggeman, P.J. Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. J. Phys. D Appl. Phys. 2013, 46, 175203. [Google Scholar] [CrossRef]
- Shen, J.; Tian, Y.; Li, Y.; Ma, R.; Zhang, Q.; Zhang, J.; Fang, J. Bactericidal Effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci. Rep. 2016, 6, 28505. [Google Scholar] [CrossRef]
- Song, S.; Sözer, E.B.; Jiang, C. Effects of pulse width on He plasma jets in contact with water evaluated by OH(A–X) emission and OHaq production. Jpn. J. Appl. Phys. 2019, 58, 066002. [Google Scholar] [CrossRef]
- Takamatsu, T.; Uehara, K.; Sasaki, Y.; Hidekazu, M.; Matsumura, Y.; Iwasawa, A.; Ito, N.; Kohno, M.; Azuma, T.; Okino, A. Microbial inactivation in the liquid phase induced by multigas plasma jet. PLoS ONE 2015, 10, e0135546. [Google Scholar] [CrossRef]
- Schnabel, U.; Handorf, O.; Stachowiak, J.; Boehm, D.; Weit, C.; Weihe, T.; Schäfer, J.; Below, H.; Bourke, P.; Ehlbeck, J. Plasma-functionalized water: From bench to prototype for fresh-cut lettuce. Food Eng. Rev. 2021, 13, 115–135. [Google Scholar] [CrossRef]
- Schmidt, M.; Hahn, V.; Altrock, B.; Gerling, T.; Gerber, I.C.; Weltmann, K.D.; von Woedtke, T. Plasma-activation of larger liquid volumes by an inductively-limited discharge for antimicrobial purposes. Appl. Sci. 2019, 9, 2150. [Google Scholar] [CrossRef]
- Artemev, K.; Kolik, L.; Podkovyrov, I.; Sevostyanov, S.; Kosolapov, V.; Meshalkin, V.; Diuldin, M. Generation of plasma-activated water using a direct piezo-discharge: Physicochemical aspects. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Virtual Conference; IOP Publishing: Bristol, UK, 2019; Volume 390, pp. 1–9. [Google Scholar]
- Konchekov, E.M.; Gusein-zade, N.G.; Kolik, L.V.; Artem’ev, K.V.; Pulish, A.V. Using of direct piezo-discharge in generation of plasma-activated liquid media. IOP Conf. Ser. Mater. Sci. Eng. 2020, 848, 012037. [Google Scholar] [CrossRef]
- Konchekov, E.M.; Glinushkin, A.P.; Kalinitchenko, V.P.; Artem’ev, K.V.; Burmistrov, D.E.; Kozlov, V.A.; Kolik, L. Properties and use of water activated by plasma of piezoelectric direct discharge. Front. Phys. 2021, 8, 616385. [Google Scholar] [CrossRef]
- Konchekov, E.M.; Kolik, L.V.; Danilejko, Y.K.; Belov, S.V.; Artem’ev, K.V.; Astashev, M.E.; Pavlik, T.I.; Lukanin, V.I.; Kutyrev, A.I.; Smirnov, I.G.; et al. Enhancement of the plant grafting technique with dielectric barrier discharge cold atmospheric plasma and plasma-treated solution. Plants 2022, 11, 1373. [Google Scholar] [CrossRef]
- Pavlik, T.I.; Gusein-zade, N.G.O.; Kolik, L.V.; Shimanovskii, N.L. Comparison of the biological properties of plasma-treated solution and solution of chemical reagents. Appl. Sci. 2022, 12, 3704. [Google Scholar] [CrossRef]
- Herianto, S.; Shih, M.K.; Lin, C.M.; Hung, Y.C.; Hsieh, C.W.; Wu, J.S.; Chen, M.H.; Chen, H.L.; Hou, C.Y. The effects of glazing with plasma-activated water generated by a piezoelectric direct discharge plasma system on whiteleg shrimp (Litopenaeus vannamei). LWT—Food Sci. Technol. 2021, 154, 112547. [Google Scholar] [CrossRef]
- Herianto, S.; Arcega, R.D.; Hou, C.Y.; Chao, H.R.; Lee, C.C.; Lin, C.M.; Mahmudiono, T.; Chen, H.L. Chemical decontamination of foods using non-thermal plasma-activated water. Sci. Total Environ. 2023, 874, 162235. [Google Scholar] [CrossRef]
- Suzuki-Karasaki, M.; Ando, T.; Ochiai, Y.; Kawahara, K.; Suzuki-Karasaki, M.; Nakayama, H.; Suzuki-Karasaki, Y. Air plasma-activated medium evokes a death-associated perinuclear mitochondrial clustering. Int. J. Mol. Sci. 2022, 23, 1124. [Google Scholar] [CrossRef]
- Robinson, R.D. Acidity of Plasma Activated Water from Non-Equilibrium Plasma Discharges and Identification of Superoxide and Ozonide as the Conjugate Bases of Metastable Plasma Acid. Ph.D. Thesis, Drexel University, Philadelphia, PA, USA, 2018. [Google Scholar]
- Patange, A.; Lu, P.; Boehm, D.; Cullen, P.; Bourke, P. Efficacy of cold plasma functionalized water for improving microbiological safety of fresh produce and wash water recycling. Food Microbiol. 2019, 84, 103226. [Google Scholar] [CrossRef]
- Tian, W.; Kushner, M.J. Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue. J. Phys. D Appl. Phys. 2014, 47, 165201. [Google Scholar] [CrossRef]
- Tian, W.; Lietz, A.M.; Kushner, M.J. The consequences of air flow on the distribution of aqueous species during dielectric barrier discharge treatment of thin water layers. Plasma Sources Sci. Technol. 2016, 25, 055020. [Google Scholar] [CrossRef]
- Risa Vaka, M.; Sone, I.; García Álvarez, R.; Walsh, J.L.; Prabhu, L.; Sivertsvik, M.; Noriega Fernández, E. Towards the next-generation disinfectant: Composition, storability and preservation potential of plasma activated water on baby spinach leaves. Foods 2019, 8, 692. [Google Scholar] [CrossRef]
- Boehm, D.; Heslin, C.; Cullen, P.; Bourke, P. Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma. Sci. Rep. 2016, 6, 21464. [Google Scholar] [CrossRef]
- Royintarat, T.; Seesuriyachan, P.; Boonyawan, D.; Choi, E.H.; Wattanutchariya, W. Mechanism and optimization of non-thermal plasma-activated water for bacterial inactivation by underwater plasma jet and delivery of reactive species underwater by cylindrical DBD plasma. Curr. Appl. Phys. 2019, 19, 1006–1014. [Google Scholar] [CrossRef]
- Smet, C.; Govaert, M.; Kyrylenko, A.; Easdani, M.; Walsh, J.L.; Van Impe, J.F. Inactivation of single strains of Listeria monocytogenes and Salmonella typhimurium planktonic cells biofilms with plasma activated liquids. Front. Microbiol. 2019, 10, 01539. [Google Scholar] [CrossRef] [PubMed]
- Osman, I.; Ponukumati, A.; Vargas, M.; Bhakta, D.; Ozoglu, B.; Bailey, C. Plasma-activated vapor for sanitization of hands. Plasma Med. 2016, 6, 235–245. [Google Scholar] [CrossRef]
- Ziuzina, D.; Patil, S.; Cullen, P.; Keener, K.; Bourke, P. Atmospheric cold plasma inactivation of Escherichia Coli Liq. Media Inside A Sealed Packag. J. Appl. Microbiol. 2013, 114, 778–787. [Google Scholar] [CrossRef]
- Kim, H.K.; Yang, G.W.; Hong, Y.C. Methylene blue degradation using non-thermal plasma. Plasma 2024, 7, 767–779. [Google Scholar] [CrossRef]
- Kantarci, N.; Borak, F.; Ulgen, K.O. Bubble column reactors. Process Biochem. 2005, 40, 2263–2283. [Google Scholar] [CrossRef]
- Judée, F.; Simon, S.; Bailly, C.; Dufour, T. Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms. Water Res. 2018, 133, 47–59. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Lu, X.P.; Laroussi, M.; Dobbs, F.C. Sublethal and killing effects of atmospheric-pressure, nonthermal plasma on eukaryotic microalgae in aqueous media. Plasma Process. Polym. 2008, 5, 552–558. [Google Scholar] [CrossRef]
- Jeon, J. Surface Micro-Discharge (SMD)—Analysis of the Antimicrobial Effect and the Plasma Chemistry. Ph.D. Thesis, Ludwig-Maximilian-Universität München, München, Germany, 2014. [Google Scholar]
- Tanino, M.; Xilu, W.; Takashima, K.; Katsura, S.; Mizuno, A. Sterilization using dielectric barrier discharge at atmospheric pressure. In Proceedings of the Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, Hong Kong, China, 2–6 October 2005; Volume 2, pp. 784–788. [Google Scholar] [CrossRef]
- Sakudo, A.; Yagyu, Y.; Onodera, T. Disinfection and sterilization using plasma technology: Fundamentals and future perspectives for biological applications. Int. J. Mol. Sci. 2019, 20, 5216. [Google Scholar] [CrossRef]
- Jungbauer, G.; Favaro, L.; Müller, S.; Sculean, A.; Eick, S. The in-vitro activity of a cold atmospheric plasma device utilizing ambient air against bacteria and biofilms associated with periodontal or peri-implant diseases. Antibiotics 2022, 11, 752. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Furuya, O.; Ikeda, K.; Nakatani, T. Generation and transportation mechanisms of chemically active species by dielectric barrier discharge in a tube for catheter sterilization. Plasma Process. Polym. 2008, 5, 606–614. [Google Scholar] [CrossRef]
- Kelly-Wintenberg, K.; Montie, T.C.; Brickman, C.; Roth, J.R.; Carr, A.K.; Sorge, K.; Wadsworth, L.D.; Tsai, P.P.Y. Room temperature sterilization of surfaces and fabrics with a one atmosphere uniform glow discharge plasma. J. Ind. Microbiol. Biotechnol. 1998, 20, 69–74. [Google Scholar] [CrossRef]
- Roth, J.R.; Chen, Z.; Sherman, D.M.; Karakaya, F. Increasing the surface energy and sterilization of nonwoven fabrics by exposure to a one atmosphere uniform glow discharge plasma (OAUGDP. Int. Nonwovens J. 2001, 10, 34–47. [Google Scholar] [CrossRef]
- Heise, M.; Neff, W.; Franken, O.; Wunderlich, J. Sterilization of polymer foils with dielectric barrier discharge at atmospheric pressure. Plasmas Polym. 2004, 9, 23–33. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Benjakul, S.; Vongkamjan, K. Dielectric barrier discharge cold atmospheric plasma: Bacterial inactivation mechanism. J. Food Saf. 2019, 39, e12705. [Google Scholar] [CrossRef]
- Trompeter, J.; Neff, W.J.; Franken, O.; Heise, M.; Neier, M.; Liu, S.; Pietsch, G.J. Reduction of bacillus subtilis and aspergilius niger spores using nonthermal atmospheric gas discharges. IEEE Rr. Plasma Sci. 2002, 30, 1416–1423. [Google Scholar] [CrossRef]
- Yasuda, H.; Hashimoto, M.; Rahman, M.M.; Takashima, K.; Mizuno, A. States of biological components in bacteria and bacteriophages during inactivation by atmospheric dielectric barrier discharges. Plasma Process. Polym. 2008, 5, 615–621. [Google Scholar] [CrossRef]
- Luan, P.; Bastarrachea, L.J.; Gilbert, A.R.; Tikekar, R.; Oehrlein, G.S. Decontamination of raw produce by surface microdischarge and the evaluation of its damage to cellular components. Plasma Process. Polym. 2019, 16, 1800193. [Google Scholar] [CrossRef]
- Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, V.; Doležalová, E.; Šimek, M.; Biederman, H. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air. J. Phys. D Appl. Phys. 2017, 50, 135201. [Google Scholar] [CrossRef]
- Scholtz, V.; Jirešovǎ, J.; Šerǎ, B.; Julǎk, J. A review of microbial decontamination of cereals by non-thermal plasma. Foods 2021, 10, 2927. [Google Scholar] [CrossRef]
- Laroque, D.A.; Seó, S.T.; Valencia, G.A.; Laurindo, J.B.; Carciofi, B.A.M. Cold plasma in food processing: Design, mechanisms, and application. J. Food Eng. 2022, 312, 110748. [Google Scholar] [CrossRef]
- Dufour, T.; Gutierrez, Q.; Bailly, C. Sustainable improvement of seeds vigor using dry atmospheric plasma priming: Evidence through coating wettability, water uptake, and plasma reactive chemistry. J. Appl. Phys. 2021, 129, 084902. [Google Scholar] [CrossRef]
- Priatama, R.A.; Pervitasari, A.N.; Park, S.; Park, S.J.; Lee, Y.K. Current advancements in the molecular mechanism of plasma treatment for seed germination and plant growth. Int. J. Mol. Sci. 2022, 23, 4609. [Google Scholar] [CrossRef] [PubMed]
- Šerá, B.; Scholtz, V.; Jirešová, J.; Khun, J.; Julák, J.; Šerý, M. Effects of non-thermal plasma treatment on seed germination and early growth of leguminous plants—A review. Plants 2021, 10, 1616. [Google Scholar] [CrossRef]
- ISO/IEC 17050-1:2004; Conformity Assessment— Supplier’s Declaration of Conformity—Part I: General Requirements. VDE VERLAG GmbH: Berlin-Offenbach, Germany, 2007. Available online: https://www.vde-verlag.de/iec-normen/211618/iso-iec-17050-1-2004.html (accessed on 2 July 2025).
- Brennen, C.E. Cavitation and Bubble Dynamics; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Simon, S.; Salgado, B.; Hasan, M.I.; Sivertsvik, M.; Fernández, E.; Walsh, J.L. Influence of potable water origin on the physicochemical and antimicrobial properties of plasma activated water. Plasma Chem. Plasma Process. 2022, 42, 377–393. [Google Scholar] [CrossRef]
- Cosby, P.C. Electron-impact dissociation of oxygen. J. Chem. Phys. 1993, 98, 9560–9569. [Google Scholar] [CrossRef]
- Cosby, P.C. Electron-impact dissociation of nitrogen. J. Chem. Phys. 1993, 98, 9544–9553. [Google Scholar] [CrossRef]
- Schüttler, S.; Schöne, A.L.; Jeß, E.; Gibson, A.R.; Golda, J. Production and transport of plasma-generated hydrogen peroxide from gas to liquid. Phys. Chem. Chem. Phys. 2024, 26, 8255–8272. [Google Scholar] [CrossRef]
- Zeghioud, H.; Nguyen-Tri, P.; Khezami, L.; Amrane, A.; Assadi, A.A. Review on discharge plasma for water treatment: Mechanism, reactor geometries, active species and combined processes. J. Water Process Eng. 2020, 38, 101664. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Guo, Y.; Liu, J.; Wang, K.; Luo, H.; Fu, Y. Kinetic model of grating-like DBD fed with flowing humid air. Plasma Sources Sci. Technol. 2024, 33, 025001. [Google Scholar] [CrossRef]
- Malik, M.A. Nitric oxide production by high voltage electrical discharges for medical uses: A review. Plasma Chem. Plasma Process. 2016, 36, 737–766. [Google Scholar] [CrossRef]
- Fridman, A. Plasma Chemistry; Cambridge University Press: New York, NY, USA, 2008; Chapter 6.5.6; pp. 386–388. [Google Scholar]
- Dorai, R.; Kushner, M.J. A model for plasma modification of polypropylene using atmospheric pressure discharges. J. Phys. D Appl. Phys. 2003, 36, 666–685. [Google Scholar] [CrossRef]
- Becker, K.; Schmidt, M.; Viggiano, A.A.; Dressler, R.; Williams, S. Air plasma chemistry. In Non-Equilibrium Air Plasmas at Atmospheric Pressure; Becker, K.H., Kogelschatz, U., Schoenbach, K.H., Barker, R.J., Eds.; IoP–Institute of Physics Publishing: Bristol, UK; Philadelphia, PA, USA, 2005; Chapter 4; pp. 124–182. [Google Scholar]
- Herron, J.T.; Green, D.S. Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reactions. Plasma Chem. Plasma Process. 2001, 21, 459–481. [Google Scholar] [CrossRef]
- Holleman, A.F.; Wiberg, E. Inorganic Chemistry; Academic Press: Boston, MA, USA, 2001; Chapter 15.1.4.5; p. 654. [Google Scholar]
- Bruggeman, P.; Schram, D.C. On OH production in water containing atmospheric pressure plasmas. Plasma Sources Sci. Technol. 2010, 19, 045025. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, F.; Liu, Y.; Zhang, R.; Hou, H. Effects of electrode structure and electron energy on abatement of NO in dielectric barrier discharge reactor. Appl. Sci. 2018, 8, 618. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Wei, H.; Zhang, R.; Luo, G.; Hou, H.; Chen, S.; Zhang, R. NO removal by plasma-enhanced NH3-SCR using methane as an assistant reduction agent at low temperature. Appl. Sci. 2019, 9, 2751. [Google Scholar] [CrossRef]
- Delachaux, F.; Vallières, C.; Monnier, H.; Lecler, M.T. Experimental study of NO and NO2 adsorption on a fresh or dried NaY zeolite: Influence of the gas composition by breakthrough curves measurements. Adsorption 2019, 25, 95–103. [Google Scholar] [CrossRef]
- Braun, D.; Küchler, U.; Pietsch, G. Behavior of NOx in air-fed ozonizers. Pure Appl. Chem. 1988, 60, 741–746. [Google Scholar] [CrossRef]
- Kogelschatz, U.; Baessler, P. Determination of nitrous oxide and dinitrogen pentoxide concentrations in the output of air-fed ozone generators of high power density. Ozone Sci. Eng. 1987, 9, 195–206. [Google Scholar] [CrossRef]
- Fridman, A. Plasma Chemistry; Cambridge University Press: New York, NY, USA, 2008; Chapter 6.5.7; pp. 388–390. [Google Scholar]
- Janda, M.; Hensel, K.; Tóth, P.; Hassan, M.E.; Machala, Z. The role of HNO2 in the generation of plasma-activated water by air transient spark discharge. Appl. Sci. 2021, 11, 7053. [Google Scholar] [CrossRef]
- Rothman, L.; Jacquemart, D.; Barbe, A.; Chris Benner, D.; Birk, M.; Brown, L.; Carleer, M.; Chackerian, C.; Chance, K.; Coudert, L.; et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2005, 96, 139–204. [Google Scholar] [CrossRef]
- Liu, F.; Sun, P.; Bai, N.; Tian, Y.; Zhou, H.; Wei, S.; Zhou, Y.; Zhang, J.; Zhu, W.; Becker, K.; et al. Inactivation of bacteria in an aqueous environment by a direct-current, cold-atmospheric-pressure air plasma microjet. Plasma Process. Polym. 2010, 7, 231–236. [Google Scholar] [CrossRef]
- Rodebush, W.H.; Wahl, M.H. The reactions of the hydroxyl radical in the electrodeless discharge in water vapor. J. Chem. Phys. 1933, 1, 696–702. [Google Scholar] [CrossRef]
- Porter, D.; Poplin, M.D.; Holzer, F.; Finney, W.C.; Locke, B.R. Formation of hydrogen peroxide, hydrogen, and oxygen in gliding arc electrical discharge reactors with water spray. IEEE Trans. Ind. Appl. 2009, 45, 623–629. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Chen, Q.; Ostrikov, K.K. Recent advances towards aqueous hydrogen peroxide formation in a direct current plasma–liquid system. High Volt. 2022, 7, 405–419. [Google Scholar] [CrossRef]
SEI Level | Low | Moderate | High | Very High | |
---|---|---|---|---|---|
DBD driver voltage | [V] | 12.5 | 15.0 | 12.5 | 15.0 |
Discharge power | [W] | 11.0 | 15.7 | 11.0 | 15.7 |
Air flow | [SLM] | 2.0 | 2.0 | 0.5 | 0.5 |
SEI | [] | 0.33 | 0.47 | 1.32 | 1.88 |
Wave | Lower | Upper | Coefficient | |||
---|---|---|---|---|---|---|
Molecule | Number | Limit | Limit | of Variation | Overlapping | Source |
[] | [] | [] | [%] | |||
1054.98 | 964.34 | 1074.27 | 3.0 | no | [137] | |
1627.80 | 1558.37 | 1654.80 | 129.4 | with O | [138] | |
O | 2237.26 | 2160.12 | 2260.41 | 14.7 | no | [138] |
742.54 | 702.04 | 779.18 | 9.2 | no | [53] | |
879.48 | 833.19 | 933.48 | 12.3 | no | [139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzec, D.; Freund, F.; Bäuml, C.; Penzkofer, P.; Beier, O.; Pfuch, A.; Vogelsang, K.; Froehlich, F.; Nettesheim, S. Hybrid Dielectric Barrier Discharge Reactor: Production of Reactive Oxygen–Nitrogen Species in Humid Air. Plasma 2025, 8, 27. https://doi.org/10.3390/plasma8030027
Korzec D, Freund F, Bäuml C, Penzkofer P, Beier O, Pfuch A, Vogelsang K, Froehlich F, Nettesheim S. Hybrid Dielectric Barrier Discharge Reactor: Production of Reactive Oxygen–Nitrogen Species in Humid Air. Plasma. 2025; 8(3):27. https://doi.org/10.3390/plasma8030027
Chicago/Turabian StyleKorzec, Dariusz, Florian Freund, Christian Bäuml, Patrik Penzkofer, Oliver Beier, Andreas Pfuch, Klaus Vogelsang, Frank Froehlich, and Stefan Nettesheim. 2025. "Hybrid Dielectric Barrier Discharge Reactor: Production of Reactive Oxygen–Nitrogen Species in Humid Air" Plasma 8, no. 3: 27. https://doi.org/10.3390/plasma8030027
APA StyleKorzec, D., Freund, F., Bäuml, C., Penzkofer, P., Beier, O., Pfuch, A., Vogelsang, K., Froehlich, F., & Nettesheim, S. (2025). Hybrid Dielectric Barrier Discharge Reactor: Production of Reactive Oxygen–Nitrogen Species in Humid Air. Plasma, 8(3), 27. https://doi.org/10.3390/plasma8030027