Quantifying Plasma Dose for Barley Seed Treatment by Volume Dielectric Barrier Discharges in Atmospheric-Pressure Synthetic Air
Abstract
:1. Introduction
2. Experimental Setup, Materials, and Methods
3. Results
3.1. Basic Discharge Characteristics
3.2. Four-Channel High-Speed Imaging
3.3. Optical Emission Spectroscopy
3.4. Advantages and Consequences of Controlled Seed Treatment
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DBD | Dielectric barrier discharge |
VDBD | Volume DBD |
MD(s) | Microdischarge(s) |
ICCD | Intensified charge-coupled device |
SPS | Second positive system |
FNS | First positive system |
VDF | Vibrational distribution function |
References
- Knorr, D.; Froehling, A.; Jaeger, H.; Reineke, K.; Schlueter, O.; Schoessler, K. Emerging Technologies in Food Processing. Annu. Rev. Food Sci. Technol. 2011, 2, 203–235. [Google Scholar] [CrossRef] [PubMed]
- Niemira, B.A. Cold Plasma Decontamination of Food. Annu. Rev. Food Sci. Technol. 2012, 3, 125–142. [Google Scholar] [CrossRef]
- Ito, M.; Oh, J.S.; Ohta, T.; Shiratani, M.; Hori, M. Current Status and Future Prospects of Agricultural Applications Using Atmospheric-Pressure Plasma Technologies. Plasma Process. Polym. 2018, 15, 1700073. [Google Scholar] [CrossRef]
- Bourke, P.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Keener, K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 2018, 36, 615–626. [Google Scholar] [CrossRef]
- Song, J.S.; Kim, S.B.; Ryu, S.; Oh, J.; Kim, D.S. Emerging Plasma Technology That Alleviates Crop Stress During the Early Growth Stages of Plants: A Review. Front. Plant Sci. 2020, 11, 545104. [Google Scholar] [CrossRef]
- Attri, P.; Ishikawa, K.; Okumura, T.; Koga, K.; Shiratani, M. Plasma Agriculture from Laboratory to Farm: A Review. Processes 2020, 8, 1002. [Google Scholar] [CrossRef]
- Šimek, M.; Homola, T. Plasma-Assisted Agriculture: History, Presence, and Prospects—A Review. Eur. Phys. J. D 2021, 75, 210. [Google Scholar] [CrossRef]
- Colonna, G.; Capitelli, M.; Laricchiuta, A. Cold Plasmas: Fundamentals and Applications. Eur. Phys. J. D 2021, 75, 242. [Google Scholar] [CrossRef]
- Mildaziene, V.; Ivankov, A.; Sera, B.; Baniulis, D. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants 2022, 11, 856. [Google Scholar] [CrossRef]
- Bozhanova, V.; Marinova, P.; Videva, M.; Nedjalkova, S.; Benova, E. Effect of Cold Plasma on the Germination and Seedling Growth of Durum Wheat Genotypes. Processes 2024, 12, 544. [Google Scholar] [CrossRef]
- Capelli, F.; Laghi, G.; Laurita, R.; Puač, N.; Gherardi, M. Recommendations and Guidelines for the Description of Cold Atmospheric Plasma Devices in Studies of Their Application in Food Processing. Innov. Food Sci. Emerg. Technol. 2024, 97, 103818. [Google Scholar] [CrossRef]
- Bilea, F.; Garcia-vaquero, M.; Magureanu, M.; Mihaila, I.; Mozetič, M.; Pawłat, J.; Primc, G.; Puač, N.; Stancampiano, A.; Topala, I.; et al. Non-Thermal Plasma as Environmentally-Friendly Technology for Agriculture: A Review and Roadmap. CRC Crit. Rev. Plant Sci. 2024, 43, 428–486. [Google Scholar] [CrossRef]
- Ahmed, N.; Yong, L.X.; Yang, J.H.C.; Siow, K.S. Review of Non-Thermal Plasma Technology and Its Potential Impact on Food Crop Seed Types in Plasma Agriculture. Plasma Chem. Plasma Process. 2024, 45, 421–462. [Google Scholar] [CrossRef]
- Veerana, M.; Mumtaz, S.; Rana, J.N.; Javed, R.; Panngom, K.; Ahmed, B.; Akter, K.; Choi, E.H. Recent Advances in Non-Thermal Plasma for Seed Germination, Plant Growth, and Secondary Metabolite Synthesis: A Promising Frontier for Sustainable Agriculture. Plasma Chem. Plasma Process. 2024, 44, 2263–2302. [Google Scholar] [CrossRef]
- Waskow, A.; Avino, F.; Howling, A.; Furno, I. Entering the Plasma Agriculture Field: An Attempt to Standardize Protocols for Plasma Treatment of Seeds. Plasma Process. Polym. 2022, 19, 2100152. [Google Scholar] [CrossRef]
- Štěpánová, V.; Slavíček, P.; Kelar, J.; Prášil, J.; Smékal, M.; Stupavská, M.; Jurmanová, J.; Černák, M. Atmospheric Pressure Plasma Treatment of Agricultural Seeds of Cucumber (Cucumis sativus L.) and Pepper (Capsicum annuum L.) with Effect on Reduction of Diseases and Germination Improvement. Plasma Process. Polym. 2018, 15, 1700076. [Google Scholar] [CrossRef]
- Kettlitz, M.; Höft, H.; Hoder, T.; Weltmann, K.D.; Brandenburg, R. Comparison of Sinusoidal and Pulsed-Operated Dielectric Barrier Discharges in an O2/N2 Mixture at Atmospheric Pressure. Plasma Sources Sci. Technol. 2013, 22, 025003. [Google Scholar] [CrossRef]
- Callegari, T.; Bernecker, B.; Boeuf, J.P. Pattern Formation and Dynamics of Plasma Filaments in Dielectric Barrier Discharges. Plasma Sources Sci. Technol. 2014, 23, 054003. [Google Scholar] [CrossRef]
- Brandenburg, R. Dielectric Barrier Discharges: Progress on Plasma Sources and on the Understanding of Regimes and Single Filaments. Plasma Sources Sci. Technol. 2018, 27, 079501. [Google Scholar] [CrossRef]
- Mrkvičková, M.; Kuthanová, L.; Bílek, P.; Obrusník, A.; Navrátil, Z.; Dvořák, P.; Adamovich, I.; Šimek, M.; Hoder, T. Electric Field in APTD in Nitrogen Determined by EFISH, FNS/SPS Ratio, α-Fitting and Electrical Equivalent Circuit Model. Plasma Sources Sci. Technol. 2023, 32, 065009. [Google Scholar] [CrossRef]
- Bílek, P.; Dias, T.C.; Prukner, V.; Hoffer, P.; Guerra, V.; Šimek, M. Streamer-Induced Kinetics of Excited States in Pure N2: I. Propagation Velocity, E/N and Vibrational Distributions of N2(C3Πu) and N2 + (B2Σu+) States. Plasma Sources Sci. Technol. 2023, 32, 105002. [Google Scholar] [CrossRef]
- Fujera, J.; Homola, T.; Jirásek, V.; Ondráček, J.; Tarabová, B.; Prukner, V.; Šimek, M. Aerosol-Based Multihollow Surface DBD: A Promising Approach for Nitrogen Fixation. Plasma Sources Sci. Technol. 2024, 33, 075002. [Google Scholar] [CrossRef]
- Feizollahi, E.; Iqdiam, B.; Vasanthan, T.; Thilakarathna, M.S.; Roopesh, M.S. Effects of Atmospheric-Pressure Cold Plasma Treatment on Deoxynivalenol Degradation, Quality Parameters, and Germination of Barley Grains. Appl. Sci. 2020, 10, 3530. [Google Scholar] [CrossRef]
- Lim, J.S.; Kim, D.; Ki, S.; Mumtaz, S.; Shaik, A.M.; Han, I.; Hong, Y.J.; Park, G.; Choi, E.H. Characteristics of a Rollable Dielectric Barrier Discharge Plasma and Its Effects on Spinach-Seed Germination. Int. J. Mol. Sci. 2023, 24, 4638. [Google Scholar] [CrossRef] [PubMed]
- Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, V.; Doležalová, E.; Šimek, M.; Biederman, H. Etching of Polymers, Proteins and Bacterial Spores by Atmospheric Pressure DBD Plasma in Air. J. Phys. D Appl. Phys. 2017, 50, 135201. [Google Scholar] [CrossRef]
- Homola, T.; Prukner, V.; Artemenko, A.; Hanuš, J.; Kylián, O.; Šimek, M. Direct Treatment of Pepper (Capsicum annuum L.) and Melon (Cucumis Melo) Seeds by Amplitude-Modulated Dielectric Barrier Discharge in Air. J. Appl. Phys. 2021, 129, 193303. [Google Scholar] [CrossRef]
- Kalachova, T.; Jindrǐchová, B.; Pospíchalová, R.; Fujera, J.; Artemenko, A.; Jančík, J.; Antonova, A.; Kylián, O.; Prukner, V.; Burketová, L.; et al. Plasma Treatment Modifies Element Distribution in Seed Coating and Affects Further Germination and Plant Growth through Interaction with Soil Microbiome. J. Agric. Food Chem. 2024, 72, 5609–5624. [Google Scholar] [CrossRef]
- Manley, T.C. The Electric Characteristics of the Ozonator Discharge. Trans. Electrochem. Soc. 1943, 84, 83. [Google Scholar] [CrossRef]
- Kriegseis, J.; Möller, B.; Grundmann, S.; Tropea, C. Light Emission, Discharge Capacitance and Thrust Production of DBD Plasma Actuators. In Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2011. [Google Scholar]
- Jiang, H.; Shao, T.; Zhang, C.; Li, W.; Yan, P.; Che, X.; Schamiloglu, E. Experimental Study of Q-V Lissajous Figures in Nanosecond-Pulse Surface Discharges. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 1101–1111. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, G.; Wang, X.; He, X. The Effect of Air Plasma on Barrier Dielectric Surface in Dielectric Barrier Discharge. Appl. Surf. Sci. 2010, 257, 1698–1702. [Google Scholar] [CrossRef]
- Jodzis, S.; Patkowski, W. Kinetic and Energetic Analysis of the Ozone Synthesis Process in Oxygen-Fed DBD Reactor. Effect of Power Density, Gap Volume and Residence Time. Ozone Sci. Eng. 2016, 38, 86–99. [Google Scholar] [CrossRef]
- Li, M.; Yan, Y.; Zhang, L.; Zhou, Z.; Zheng, L.; Zhu, B.; Wang, L.; Li, T.; Tang, X.; Zhu, Y. Promoting Ozone Synthesis from Oxygen by a High Performance Volume-Surface Hybrid Discharge. Appl. Phys. Lett. 2019, 114, 114102. [Google Scholar] [CrossRef]
- Wagner, H.-E.; Brandenburg, R.; Kozlov, K.V.; Sonnenfeld, A.; Michel, P.; Behnke, J.F. The Barrier Discharge: Basic Properties and Applications to Surface Treatment. Vacuum 2003, 71, 417–436. [Google Scholar] [CrossRef]
- Pipa, A.V.; Brandenburg, R. The Equivalent Circuit Approach for the Electrical Diagnostics of Dielectric Barrier Discharges: The Classical Theory and Recent Developments. Atoms 2019, 7, 14. [Google Scholar] [CrossRef]
- Pipa, A.V.; Koskulics, J.; Brandenburg, R.; Hoder, T. The Simplest Equivalent Circuit of a Pulsed Dielectric Barrier Discharge and the Determination of the Gas Gap Charge Transfer. Rev. Sci. Instrum. 2012, 83, 115112. [Google Scholar] [CrossRef]
- Pipa, A.V.; Hoder, T.; Koskulics, J.; Schmidt, M.; Brandenburg, R. Experimental Determination of Dielectric Barrier Discharge Capacitance. Rev. Sci. Instrum. 2012, 83, 075111. [Google Scholar] [CrossRef]
- Rad, R.H.; Brüser, V.; Brandenburg, R. Electrical Characterization and Imaging of Discharge Morphology in a Small-Scale Packed Bed Dielectric Barrier Discharge. Plasma Sources Sci. Technol. 2024, 33, 025027. [Google Scholar] [CrossRef]
- Trabelsi, S.; Nelson, S.O. Unified Microwave Moisture Sensing Technique for Grain and Seed. Meas. Sci. Technol. 2007, 18, 997–1003. [Google Scholar] [CrossRef]
- Sacilik, K.; Colak, A. Determination of Dielectric Properties of Corn Seeds from 1 to 100 MHz. Powder Technol. 2010, 203, 365–370. [Google Scholar] [CrossRef]
- Nelson, S.O.; Trabelsi, S. Models for the Microwave Dielectric Properties of Grain and Seed. Trans. ASABE 2011, 54, 549–553. [Google Scholar] [CrossRef]
- Stutz, A.M.; Tobin, J.J.; Stanke, T.; Engeling, K.W.; Kruszelnicki, J.; Kushner, M.J.; Foster, J.E. Time-Resolved Evolution of Micro-Discharges, Surface Ionization Waves and Plasma Propagation in a Two-Dimensional Packed Bed Reactor. Plasma Sources Sci. Technol. 2018, 27, 085002. [Google Scholar] [CrossRef]
- Butterworth, T.; Allen, R.W.K. Plasma-Catalyst Interaction Studied in a Single Pellet DBD Reactor: Dielectric Constant Effect on Plasma Dynamics. Plasma Sources Sci. Technol. 2017, 26, 065008. [Google Scholar] [CrossRef]
- Cheng, H.; Li, Y.; Zheng, K.; Liu, D.; Lu, X. Numerical Analysis of Nitrogen Fixation by Nanosecond Pulse Plasma. J. Phys. D Appl. Phys. 2021, 54, 184003. [Google Scholar] [CrossRef]
- Kim, H.-H.; Teramoto, Y.; Ogata, A. Time-Resolved Imaging of Positive Pulsed Corona-Induced Surface Streamers on TiO2 and γ-Al2O3-Supported Ag Catalysts. J. Phys. D Appl. Phys. 2016, 49, 459501. [Google Scholar] [CrossRef]
- Prukner, V.; Schmidt, J.; Hoffer, P.; Šimek, M. Demonstration of Dynamics of Nanosecond Discharge in Liquid Water Using Four-Channel Time-Resolved ICCD Microscopy. Plasma 2021, 4, 183–200. [Google Scholar] [CrossRef]
- Šimek, M. Optical Diagnostics of Streamer Discharges in Atmospheric Gases. J. Phys. D Appl. Phys. 2014, 47, 463001. [Google Scholar] [CrossRef]
- Vassallo, E.; Cremona, A.; Ghezzi, F.; Ricci, D. Characterization by Optical Emission Spectroscopy of an Oxygen Plasma Used for Improving PET Wettability. Vacuum 2010, 84, 902–906. [Google Scholar] [CrossRef]
- Shimizu, T.; Sakiyama, Y.; Graves, D.B.; Zimmermann, J.L.; Morfill, G.E. The Dynamics of Ozone Generation and Mode Transition in Air Surface Micro-Discharge Plasma at Atmospheric Pressure. New J. Phys. 2012, 14, 103028. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Kawakita, T.; Uchida, S.; Tochikubo, F. Simultaneous Measurement of Local Densities of Atomic Oxygen and Ozone in Pure Oxygen Pulsed Barrier Discharge under Atmospheric Pressure. J. Phys. D Appl. Phys. 2020, 53, 135201. [Google Scholar] [CrossRef]
- Baldus, S.; Schröder, D.; Bibinov, N.; Schulz-Von Der Gathen, V.; Awakowicz, P. Atomic Oxygen Dynamics in an Air Dielectric Barrier Discharge: A Combined Diagnostic and Modeling Approach. J. Phys. D Appl. Phys. 2015, 48, 275203. [Google Scholar] [CrossRef]
- Obrusnik, A.; Bilek, P.; Hoder, T.; Šimek, M.; Bonaventura, Z. Electric Field Determination in Air Plasmas from Intensity Ratio of Nitrogen Spectral Bands: I. Sensitivity Analysis and Uncertainty Quantification of Dominant Processes. Plasma Sources Sci. Technol. 2018, 27, 085013. [Google Scholar] [CrossRef]
- Bílek, P.; Obrusník, A.; Hoder, T.; Šimek, M.; Bonaventura, Z. Electric Field Determination in Air Plasmas from Intensity Ratio of Nitrogen Spectral Bands: II. Reduction of the Uncertainty and State-of-the-Art Model. Plasma Sources Sci. Technol. 2018, 27, 085012. [Google Scholar] [CrossRef]
- Bílek, P.; Šimek, M.; Bonaventura, Z. Electric Field Determination from Intensity Ratio of N2+ and N2 Bands: Nonequilibrium Transient Discharges in Pure Nitrogen. Plasma Sources Sci. Technol. 2019, 28, 115011. [Google Scholar] [CrossRef]
- Gilmore, F.R.; Laher, R.R.; Espy, P.J. Franck–Condon Factors, R-Centroids, Electronic Transition Moments, and Einstein Coefficients for Many Nitrogen and Oxygen Band Systems. J. Phys. Chem. Ref. Data 1992, 21, 1005–1107. [Google Scholar] [CrossRef]
- Ayesha, S.; Abideen, Z.; Haider, G.; Zulfiqar, F.; El-Keblawy, A.; Rasheed, A.; Siddique, K.H.M.; Khan, M.B.; Radicetti, E. Enhancing Sustainable Plant Production and Food Security: Understanding the Mechanisms and Impacts of Electromagnetic Fields. Plant Stress. 2023, 9, 100198. [Google Scholar] [CrossRef]
- Yang, L.; Liu, S.; Lin, R. The Role of Light in Regulating Seed Dormancy and Germination. J. Integr. Plant Biol. 2020, 62, 1310–1326. [Google Scholar] [CrossRef]
- Vanhaelewyn, L.; Van Der Straeten, D.; De Coninck, B.; Vandenbussche, F. Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context. Front. Plant Sci. 2020, 11, 597642. [Google Scholar] [CrossRef]
- Aarrouf, J.; Urban, L. Flashes of UV-C Light: An Innovative Method for Stimulating Plant Defences. PLoS ONE 2020, 15, e0235918. [Google Scholar] [CrossRef]
- Meyer, P.; Van de Poel, B.; De Coninck, B. UV-B Light and Its Application Potential to Reduce Disease and Pest Incidence in Crops. Hortic. Res. 2021, 8, 194. [Google Scholar] [CrossRef]
- Noble, R.E. Effects of UV-Irradiation on Seed Germination. Sci. Total Environ. 2002, 299, 173–176. [Google Scholar] [CrossRef]
- Pournavab, R.F.; Mejía, E.B.; Mendoza, A.B.; Salas Cruz, L.R.; Heya, M.N. Ultraviolet Radiation Effect on Seed Germination and Seedling Growth of Common Species from Northeastern Mexico. Agronomy 2019, 9, 269. [Google Scholar] [CrossRef]
- Hohm, T.; Preuten, T.; Fankhauser, C. Phototropism: Translating Light into Directional Growth. Am. J. Bot. 2013, 100, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Sadeghianfar, P.; Nazari, M.; Backes, G. Exposure to Ultraviolet (UV-C) Radiation Increases Germination Rate of Maize (Zea maize L.) and Sugar Beet (Beta vulgaris) Seeds. Plants 2019, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Kamel, R.M.; El-kholy, M.M.; Tolba, N.M.; Amer, A.; Eltarawy, A.M.; Ali, L.M. Influence of Germicidal Ultraviolet Radiation UV-C on the Quality of Apiaceae Spices Seeds. Chem. Biol. Technol. Agric. 2022, 9, 89. [Google Scholar] [CrossRef]
- Møller, B.; Munck, L. Seed Vigour In Relation To Heat Sensitivity And Heat Resistance In Barley Evaluated By Multivariate Data Analysis. J. Inst. Brew. 2002, 108, 286–293. [Google Scholar] [CrossRef]
- Couture, L.; Sutton, J.C. Effect of dry heat treatments on survival of seed borne Bipolaris sorokiniana and germination of barley seeds. Can. Plant Dis. Surv. 1980, 60, 59–61. [Google Scholar]
Plasma Reactor Characteristics and Treated Samples | |
Discharge configuration | Volume DBD in parallel plane geometry, symmetric electrodes |
Electrode materials | Alumina dielectric plates Ø = 25.4 mm, d = 0.5 mm Embedded silver powered/grounded electrodes Ø = 21 mm, d = 0.05 mm |
Discharge gap | Variable: 3/4/5/6 mm |
Discharge power | Periodic AC (5 kHz) bursts at 500 Hz repetition frequency, HV amplitude 21 kV (peak-to-peak) |
Working gas | Synthetic air (scientific, Messer), 1 slm at 20 °C and 760 Torr |
Treated samples | Spring barley (Hordeum vulgare L., cv. Malz, country of origin: Czech Republic), 0/1/3/5 seeds freely placed on the grounded side |
Sample preparation | No soaking or sterilization (base moisture content 11.5%) |
Treatment approach | Direct (filamentary microdischarges directly impacting seeds) |
Treatment time | ttr = 0, 20, 40, and 180 s at a discharge duty cycle of 0.4 |
Discharge and Treatment Characteristics (gap 5 mm) | |
Average discharge power | 0.28 ± 0.03 W |
Exposure energy per seed | 1.9 (ttr = 20 s), 5.6 (ttr = 40 s), and 16.8 (ttr = 180 s) [J/seed] |
Number of MDs per seed | 16 ± 3 (ttr = 20 s), 32 ± 5 (ttr = 40 s), and 48 ± 8 (ttr = 180 s) [104 NMD/seed] |
Average energy per MD | 35 ± 7 [μJ] |
Exposure to temperature | ≤360 ± 20 K (estimation based on the time-averaged rotational temperature of the N2(C3Πu) state) |
Exposure to electric field | Positive half-cycle: 430 ± 60 Td, negative half-cycle: 870 ± 70 Td (E/N estimated spectroscopically using FNS/SPS ratio method) |
Exposure to gas products | O3: 200–300 ppm, NOx: <3 ppm |
Exposure to UV | ≤0.1% * (UV-C): 7.5% (UV-B):92.5% (UV-A) |
Post-Treatment Testing | |
Contact angle | ≈105° (no treatment), <35°(ttr ≥ 20 s) (droplet of distilled water right after treatment, registered time lapse) |
Germinability | 100% (ttr = 0 and 20 s), 0% (ttr = 40 and 180 s) (in Petri dish with water agar for 6 days, registered time lapse) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujera, J.; Hoffer, P.; Prukner, V.; Šimek, M. Quantifying Plasma Dose for Barley Seed Treatment by Volume Dielectric Barrier Discharges in Atmospheric-Pressure Synthetic Air. Plasma 2025, 8, 11. https://doi.org/10.3390/plasma8010011
Fujera J, Hoffer P, Prukner V, Šimek M. Quantifying Plasma Dose for Barley Seed Treatment by Volume Dielectric Barrier Discharges in Atmospheric-Pressure Synthetic Air. Plasma. 2025; 8(1):11. https://doi.org/10.3390/plasma8010011
Chicago/Turabian StyleFujera, Jiří, Petr Hoffer, Václav Prukner, and Milan Šimek. 2025. "Quantifying Plasma Dose for Barley Seed Treatment by Volume Dielectric Barrier Discharges in Atmospheric-Pressure Synthetic Air" Plasma 8, no. 1: 11. https://doi.org/10.3390/plasma8010011
APA StyleFujera, J., Hoffer, P., Prukner, V., & Šimek, M. (2025). Quantifying Plasma Dose for Barley Seed Treatment by Volume Dielectric Barrier Discharges in Atmospheric-Pressure Synthetic Air. Plasma, 8(1), 11. https://doi.org/10.3390/plasma8010011