Application of Nitrogen Piezoelectric Direct Discharge for Increase in Surface Free Energy of Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasma Treatment
2.2. Activation Area Determination
2.3. Water Contact Angle
2.4. Test Inks
2.5. Substrates
2.6. Activation Area
PDD Morphology
3. Results and Discussion
3.1. SFE and Activation Area
3.1.1. Influence of Distance
3.1.2. Influence of Gas Flow
3.1.3. Influence of Treatment Time
3.2. Activation Rate
3.3. Hydrophobic Recovery
3.4. Water Contact Angle
3.4.1. Influence of Distance
3.4.2. Influence of Treatment Time
3.4.3. Extended Plasma Liner
3.5. PMMA Lenses Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reuter, S.; von Woedtke, T.; Weltmann, K.D. The kINPen—A review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J. Phys. D Appl. Phys. 2018, 51, 233001. [Google Scholar] [CrossRef] [Green Version]
- Fanelli, F.; Fracassi, F. Atmospheric pressure non-equilibrium plasma jet technology: General features, specificities and applications in surface processing of materials. Surf. Coat. Technol. 2017, 322, 174–201. [Google Scholar] [CrossRef]
- Winter, J.; Brandenburg, R.; Weltmann, K.D. Atmospheric pressure plasma jets: An overview of devices and new directions. Plasma Sources Sci. Technol. 2015, 24, 064001. [Google Scholar] [CrossRef]
- Penkov, O.; Khadem, M.; Lim, W.S.; Kim, D.E. A review of recent applications of atmospheric pressure plasma jets for materials processing. J. Coat. Technol. Res. 2015, 12, 225–235. [Google Scholar] [CrossRef]
- Lu, X.; Laroussi, M.; Puech, V. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci. Technol. 2012, 21, 034005. [Google Scholar] [CrossRef]
- Laroussi, M.; Akan, T. Arc-free atmospheric pressure cold plasma jets: A review. Plasma Proces. Polym. 2007, 4, 777–778. [Google Scholar] [CrossRef]
- Schütze, A.; Jeong, J.Y.; Babayan, S.E.; Park, J.; Selwyn, G.S.; Hiks, R.F. The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. IEEE Trans. Plasma Sci. 1998, 26, 1685–1694. [Google Scholar] [CrossRef] [Green Version]
- Ohkubo, Y.; Endo, K.; Yamamura, K. Adhesive-free adhesion between heat-assisted plasma-treated fluoropolymers (PTFE, PFA) and plasma-jet-treated polydimethylsiloxane (PDMS) and its application. Sci. Rep. 2018, 8, 18058. [Google Scholar] [CrossRef] [Green Version]
- Palleiro, C.; Stepanov, S.; Rodríguez-Senín, E.; Wilken, R.; Ihde, J. Atmospheric pressure plasma surface treatment of thermoplastic composites for bonded joints. In Proceedings of the 20th International Conference on Composite Materials—ICCM20, Copenhagen, Denemark, 19–24 July 2015; pp. P101–P112. [Google Scholar]
- Kolb, J.F.; Mohamed, A.A.H.; Price, R.O.; Swanson, R.J.; Bowman, A.; Chiavarini, R.L.; Stacey, M.; Schoenbach, K.H. Cold atmospheric pressure air plasma jet for medical applications. Appl. Phys. Lett. 2008, 92, 241501. [Google Scholar] [CrossRef] [Green Version]
- Noeske, M.; Degenhardt, J.; Strudthoff, S.; Lommatzsch, U. Plasma jet treatment of five polymers at atmospheric pressure: Surface modifications and the relevance for adhesion. Int. J. Adhes. Adhes. 2004, 24, 171–177. [Google Scholar] [CrossRef]
- Hofmans, M.; Viegas, P.; van Rooij, O.; Klarenaar, B.; Guaitella, O.; Bourdon, A.; Sobota, A. Characterization of a kHz atmospheric pressure plasma jet: Comparison of discharge propagation parameters in experiments and simulations without target. Plasma Sources Sci. Technol. 2020, 29, 034003. [Google Scholar] [CrossRef]
- Veda Prakash, G.; Patel, K.; Behera, N.; Kumar, A. Expansion dynamics of atmospheric pressure helium plasma jet in ambient air. Phys. Lett. A 2020, 384, 126497. [Google Scholar] [CrossRef]
- Klarenaar, B.; Guaitella, O.; Engeln, R.; Sobota, A. How dielectric, metallic and liquid targets influence the evolution of electron properties in a pulsed He jet measured by Thomson and Raman scattering. Plasma Sources Sci. Technol. 2018, 27, 085004. [Google Scholar] [CrossRef]
- Viegas, P.; Slikboer, E.; Obrusník, A.; Bonaventura, Z.; Sobota, A.; Garcia-Caurel, E.; Guaitella, O.; Bourdon, A. Investigation of a plasma–target interaction through electric field characterization examining surface and volume charge contributions: Modeling and experiment. Plasma Sources Sci. Technol. 2018, 27, 094002. [Google Scholar] [CrossRef]
- Begum, A.; Laroussi, M.; Pervez, M.R. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon. AIP Adv. 2013, 3, 062117. [Google Scholar] [CrossRef]
- Kim, D.B.; Rhee, J.K.; Gweon, B.; Moon, S.Y.; Choe, W. Comparative study of atmospheric pressure low and radio frequency microjet plasmas produced in a single electrode configuration. Appl. Phys. Lett. 2007, 91, 151502. [Google Scholar] [CrossRef] [Green Version]
- Sobota, A.; Guaitella, O.; Sretenović, G.; Kovačević, V.; Slikoboer, E.; Krstić, I.; Obradović, B.; Kuraica, M. Plasma-surface interaction: Dielectric and metallic targets and their influence on the electric field profile in a kHz AC-driven He plasma jet. Plasma Sources Sci. Technol. 2019, 28, 045003. [Google Scholar] [CrossRef]
- Van Vrekhem, S.; Vloebergh, K.; Asadian, M.; Vercruysse, C.; Declercq, H.; Tongel, A.V.; Wilde, L.D.; Geyter, N.D.; Morent, R. Improving the surface properties of an UHMWPE shoulder implant with an atmospheric pressure plasma jet. Sci. Rep. 2018, 8, 4720. [Google Scholar] [CrossRef] [PubMed]
- Dünnbier, M.; Becker, M.M.; Iseni, S.; Bansemer, R.; Loffhagen, D.; Reuter, S.; Weltmann, K.D. Stability and excitation dynamics of an argon micro-scaled atmospheric pressure plasma jet. Plasma Sources Sci. Technol. 2015, 24, 065018. [Google Scholar] [CrossRef]
- Sarani, A.; Nikiforov, A.Y.; Leys, C. Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures: Optical emission spectroscopy and temperature measurements. Phys. Plasmas 2010, 17, 063504. [Google Scholar] [CrossRef] [Green Version]
- Wolter, M.; Bornholdt, S.; Häckel, M.; Kersten, H. Atmospheric pressure plasma jet for treatment of polymers. J. Achiev. Mater. Manuf. Eng. 2009, 37, 730–734. [Google Scholar]
- Weltmann, K.D.; Brandenburg, R.; von Woedtke, T.; Ehlbeck, J.; Foest, R.; Stieber, M.; Kindel, E. Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). J. Phys. D Appl. Phys. 2008, 41, 194008. [Google Scholar] [CrossRef]
- Chien, H.H.; Cheng, Y.C.; Hao, Y.C.; Hsu, C.c.; Cheng, I.C.; Yu, I.S.; Chen, J.Z. Nitrogen DC-pulse atmospheric-pressure-plasma jet (APPJ)- processed reduced graphene oxide (rGO)-carbon black (CB) nanocomposite electrodes for supercapacitor applications. Diam. Relat. Mater. 2018, 88, 23–31. [Google Scholar] [CrossRef]
- Sosnin, E.; Panarin, V.; Skakun, V.; Tarasenko, V.F.; Pechenitsin, D.S.; Kuznetsov, V.S. Source of an atmospheric-pressure plasma jet formed in air or nitrogen under barrier discharge excitation. Tech. Phys. 2016, 61, 789–792. [Google Scholar] [CrossRef]
- Ni, T.; Ding, F.; Zhu, X.; Wen, X.; Zhou, H. Cold microplasma plume produced by a compact and flexible generator at atmospheric pressure. Appl. Phys. Lett. 2008, 92, 241503. [Google Scholar] [CrossRef]
- Hong, Y.C.; Uhm, H.S.; Yi, W.J. Atmospheric pressure nitrogen plasma jet: Observation of striated multilayer discharge patterns. Appl. Phys. Lett. 2008, 93, 051504. [Google Scholar] [CrossRef]
- Hong, Y.C.; Uhm, H.S. Air plasma jet with hollow electrodes at atmospheric pressure. Phys. Plasmas 2007, 14, 053503. [Google Scholar] [CrossRef]
- Toshifuji, J.; Katsumata, T.; Takikawa, H.; Sakakibara, T.; Shimizu, I. Cold arc-plasma jet under atmospheric pressure for surface modification. Surf. Coat. Technol. 2003, 171, 302–306. [Google Scholar] [CrossRef]
- Chen, F.; Xu, W.; Lu, Y.; Song, J.; Huang, S.; Wang, L.; Parkin, I.P.; Liu, X. Hydrophilic patterning of superhydrophobic surfaces by atmospheric-pressure plasma jet. Micro Nano Lett. 2015, 10, 105–108. [Google Scholar] [CrossRef]
- Jokinen, V.; Suvanto, P.; Franssila, S. Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics 2012, 6, 016501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akishev, Y.; Grushin, M.; Dyatko, N.; Kochetov, I.; Napartovich, A.; Trushkin, N.; Duc, T.; Descours, S. Studies on cold plasma–polymer surface interaction by example of PP- and PET-films. J. Phys. D Appl. Phys. 2008, 41, 235203. [Google Scholar] [CrossRef]
- Kehrer, M.; Rottensteiner, A.; Hartl, W.; Duchoslav, J.; Stehrer, T.; Stifter, D. Cold atmospheric pressure plasma treatment for adhesion improvement on polypropylene surfaces. Surf. Coat. Technol. 2020, 403, 126389. [Google Scholar] [CrossRef]
- Lin, G.; Jiang, Y.; Kao, P.; Chiu, I.; Wu, Y.; Hsu, C.; Cheng, I.; Chen, J. Nitrogen atmospheric-pressure-plasma-jet induced oxidation of SnOx thin films. Plasma Chem. Plasma Process. 2015, 35, 979–991. [Google Scholar] [CrossRef]
- Li, G.; Li, H.P.; Sun, W.T.; Wang, S.; Tian, Z.; Bao, C.Y. Discharge features of radio-frequency, atmospheric-pressure cold plasmas under an intensified local electric field. J. Phys. D Appl. Phys. 2008, 41, 202001. [Google Scholar] [CrossRef]
- Massines, F.; Ségur, P.; Gherardi, N.; Khamphan, C.; Ricard, A. Physics and chemistry in a glow dielectric barrier discharge at atmosperic pressure: Diagnostics and modelling. Surf. Coat. Technol. 2003, 174–175, 8–14. [Google Scholar] [CrossRef]
- Teramoto, Y.; Ono, R.; Oda, T. Measurement of N2A3Σu+ metastable in N2 pulsed positive corona discharge with trace amounts of additives. J. Phys. D Appl. Phys. 2009, 42, 235205. [Google Scholar] [CrossRef]
- Golubovskii, Y.B.; Maiorov, V.A.; Behnke, J.; Behnke, J.F. On the stability of a homogeneous barrier discharge in nitrogen relative to radial perturbations. J. Phys. D Appl. Phys. 2003, 36, 975–981. [Google Scholar] [CrossRef]
- Deng, X.L.; Nikiforov, A.Y.; Vanraes, P.; Leys, C. Direct current plasma jet at atmospheric pressure operating in nitrogen and air. J. Appl. Phys. 2013, 113, 023305. [Google Scholar] [CrossRef] [Green Version]
- Wikipedia. Piezoelectric Direct Discharge Plasma. 2016. Available online: https://en.wikipedia.org/wiki/Piezoelectric_direct_discharge_plasma (accessed on 24 April 2021).
- Korzec, D.; Hoppenthaler, F.; Nettesheim, S. Piezoelectric direct discharge: Devices and applications. Plasma 2021, 4, 1–41. [Google Scholar] [CrossRef]
- Timmermann, E.; Bansemer, R.; Gerling, T.; Hahn, V.; Weltmann, K.D.; Nettesheim, S.; Puff, M. Piezoelectric-driven plasma pen with multiple nozzles used as a medical device: Risk estimation and antimicrobial efficacy. J. Phys. D Appl. Phys. 2020, 54, 025201. [Google Scholar] [CrossRef]
- Korzec, D.; Hoppenthaler, F.; Burger, D.; Andres, T.; Nettesheim, S. Atmospheric pressure plasma jet powered by piezoelectric direct discharge. Plasma Process. Polym. 2020, 17, 2000053. [Google Scholar] [CrossRef]
- Roshanghias, A.; Krivec, M.; Baumgart, M. Sintering strategies for inkjet printed metallic traces in 3D printed electronics. Flex. Print. Electron. 2017, 2, 045002. [Google Scholar] [CrossRef]
- Bednarik, M.; Mizera, A.; Manas, M.; Navratil, M.; Huba, J.; Achbergerova, E.; Stoklasek, P. Influence of the β- radiation/cold atmospheric-pressure plasma surface modification on the adhesive bonding of polyolefins. Materials 2021, 14, 76. [Google Scholar] [CrossRef]
- Chaichi, A.; Prasad, A.; Parambil, L.K.; Shaik, S.; Ettefagh, A.H.; Dasa, V.; Guo, S.; Osborn, M.L.; Devireddy, R.; Khonsari, M.M.; et al. Improvement of tribological and biocompatibility properties of orthopedic materials using piezoelectric direct discharge plasma surface modification. ACS Biomater. Sci. Eng. 2019, 5, 2147–2159. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, S.K.; Yao, P.; Wang, Y.; Chen, D. An air-plasma enhanced low-temperature wafer bonding method using high-concentration water glass adhesive layer. Appl. Surf. Sci. 2020, 500, 144007. [Google Scholar] [CrossRef]
- Zeng, Y.; Komasa, S.; Nishida, H.; Agariguchi, A.; Sekino, T.; Okazaki, J. Enhanced osseointegration and bio-decontamination of nanostructured titanium based on non-thermal atmospheric pressure plasma. Int. J. Mol. Sci. 2020, 21, 3533. [Google Scholar] [CrossRef]
- Ujino, D.; Nishizaki, H.; Higuchi, S.; Komasa, S.; Okazaki, J. Effect of plasma treatment of titanium surface on biocompatibility. Appl. Sci. 2019, 9, 2257. [Google Scholar] [CrossRef] [Green Version]
- Mahrous, A.; Mohamed, S.; Ahmed, A. The effect of atmospheric plasma-sprayed PEEK implants on osseointegration. Egypt. Dent. J. 2018, 64, 733–744. [Google Scholar] [CrossRef] [Green Version]
- Okawa, S.; Taka, N.; Aoyagi, Y. Adhesive properties of fiber-reinforced poly(ether-ether-ketone)polymer modified with helium atmospheric-pressure plasma and deep-ultraviolet light. Surf. Coat. Films 2020, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Behnecke, M.; Steinert, V.; Petersen, S. Surface characterisation of PEEK and dentin, treated with atmospheric non-thermal PDD plasma, applicable for dental chair-side procedures. Plasma 2021, 4, 389–398. [Google Scholar] [CrossRef]
- Kolomiiets, R.O.; Nikitchuk, T.M.; Morozov, D.S.; Hrek, O.V. Application of cold atmospheric plasma for the sterilization of objects of complex form. J. Zhytomyr State Technol. Univ. Ser. Tech. Sci. 2018, 1, 69–73. [Google Scholar] [CrossRef]
- Krasa, H.; Schriefl, M.A.; Kupper, M.; Melischnig, A.; Bergmann, A. Aerosol charging with a piezoelectric plasma generator. Plasma 2021, 4, 377–388. [Google Scholar] [CrossRef]
- Korzec, D.; Neuwirth, D.; Nettesheim, S. Generation of negative air ions by use of piezoelectric cold plasma generator. Plasma 2021, 4, 399–407. [Google Scholar] [CrossRef]
- Reuter, S.; Winter, J.; Iséni, S.; Schmidt-Bleker, A.; Dünnbier, M.; Masur, K.; Wende, K.; Weltmann, K.D. The influence of feed gas humidity versus ambient humidity on atmospheric pressure plasma jet-effluent chemistry and skin cell viability. IEEE Trans. Plasma Sci. 2015, 43, 3185–3192. [Google Scholar] [CrossRef]
- Korzec, D.; Andres, T.; Brandes, E.; Nettesheim, S. Visualization of activated area on polymers for evaluation of atmospheric pressure plasma jets. Polymers 2021, 13, 2711. [Google Scholar] [CrossRef]
- Kwok, D.; Neumann, A. Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci. 1999, 81, 167–249. [Google Scholar] [CrossRef]
- Korzec, D.; Hoppenthaler, F.; Andres, T.; Burger, D.; Werkmann, A.; Nettesheim, S.; Puff, M. Piezobrush® PZ3: Part I: Operation Principle and Characteristics. 2020. Whitepaper. Available online: https://www.relyon-plasma.com/wp-content/uploads/2020/11/201024_whitepaper_piezobrush_PZ3_1.pdf (accessed on 4 January 2022).
- ASTM International. Standard Test Method for Wetting Tension of Polyethylene and Polypropylene Films. 2004. Designation: D 2578-04. Available online: https://www.astm.org/d2578-04.html (accessed on 4 January 2022).
- Lommatzsch, U.; Pasedag, D.; Baalmann, A.; Ellinghorst, G.; Wagner, H.E. Atmospheric pressure plasma jet treatment of polyethylene surfaces for adhesion improvement. Plasma Process. Polym. 2007, 4, S1041–S1045. [Google Scholar] [CrossRef]
- Guragain, R.P.; Baniya, H.B.; Dhungana, S.; Gautam, S.; Pandey, B.P.; Joshi, U.M.; Subedi, D.P. Characterization of dielectric barrier discharge (DBD) produced in air at atmospheric pressure and its application in surface modification of high density polyethylene (HDPE). J. Technol. Space Plasmas 2020, 1, 27–35. [Google Scholar] [CrossRef]
- Behnisch, J.; Holländer, A.; Zimmermann, H. Factors influencing the hydrophobic recovery of oxygen-plasma-treated polyethylene. Surf. Coat. Technol. 1993, 59, 356–358. [Google Scholar] [CrossRef]
- Drnovská, H.; Lapčík Jr., L.; Buršíková, V.; Zemek, J.; Barros-Timmons, A. Surface properties of polyethylene after low-temperature plasma treatment. Colloid Polym. Sci. 2003, 281, 1025–1033. [Google Scholar] [CrossRef]
- Neto, J.F.d.M.; Alves de Souza, I.; Feitor, M.C.; Targino, T.G.; Diniz, G.F.; Libório, M.S.; Sousa, R.R.M.; Costa, T.H.d.C. Study of high-density polyethylene (HDPE) kinetics modification treated by dielectric barrier discharge (DBD) plasma. Polymers 2020, 12, 2422. [Google Scholar] [CrossRef] [PubMed]
- Van Deynse, A.; Cools, P.; Leys, C.; De Geyter, N.; Morent, R. Surface activation of polyethylene with an argon atmospheric pressure plasma jet: Influence of applied power and flow rate. Appl. Surf. Sci. 2015, 328, 269–278. [Google Scholar] [CrossRef]
- Xiaomeng, F.; Kuroda, S.; Mori, T.; Hosoi, K. High-density polyethylene (HDPE) surface treatment using an RF capacitive atmospheric pressure cold Ar plasma jet. Plasma Sci. Technol. 2013, 15, 577–581. [Google Scholar]
- Massines, F.; Gouda, G.; Gherardi, N.; Duran, M.; Croquesel, E. The role of dielectric barrier discharge atmosphere and physics on polypropylene surface treatment. Plasmas Polym. 2001, 6, 35–49. [Google Scholar] [CrossRef]
- Chiang, M.H.; Liao, K.C.; Lin, I.M.; Lu, C.C.; Huang, H.Y.; Kuo, C.L.; Wu, J.S.; Hsu, C.C.; Chen, S.H. Effects of oxygen addition and treating distance on surface cleaning of ITO glass by a non-equilibrium nitrogen atmospheric-pressure plasma jet. Plasma Chem. Plasma Process. 2010, 30, 553–563. [Google Scholar] [CrossRef]
- Fricke, K.; Tresp, H.; Bussiahn, R.; Schröder, K.; von Woedtke, T.; Weltmann, K.D. On the use of atmospheric pressure plasma for the bio-decontamination of polymers and its impact on their chemical and morphological surface properties. Plasma Chem. Plasma Process. 2012, 32, 801–816. [Google Scholar] [CrossRef]
- Korzec, D.; Little, C.; Werkmann, A.; Brandes, E. Plasma pretreatment. In Inkjet Printing in Industry; Zapka, W., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2022; Chapter 8.2. [Google Scholar]
- O’Connell, C.; Sherlock, R.; Ball, M.D.; Aszalós-Kiss, B.; Prendergast, U.; Glynn, T.J. Investigation of the hydrophobic recovery of various polymeric biomaterials after 172nm UV treatment using contact angle, surface free energy and XPS measurements. Appl. Surf. Sci. 2009, 255, 4405–4413. [Google Scholar] [CrossRef]
- Pascual, M.; Balart, R.; Sánchez, L.; Fenollar, O.; Calvo, O. Study of the aging process of corona discharge plasma effects on low density polyethylene film surface. J. Mater. Sci. 2008, 43, 4901–4909. [Google Scholar] [CrossRef]
- Balart, R.; Sánchez, L.; Fenollar, O.; Pascual, M.; Lopez, R. Hydrophobic recovery of low density polyethylene treated with corona discharge plasma. In Proceedings of the 21st International Federation of Associations of Textile Chemists and Colourists (IFATCC) International Congress, New Horizons of Textile Finishing, Barcelona, Spain, 6–9 May 2008; p. B30. [Google Scholar]
- Bormashenko, E.; Pogreb, R.; Chaniel, G.; Multanen, V.; Malkin, A.Y. Temporal electret behavior of polymer films exposed to cold radiofrequency plasma. Adv. Eng. Mater. 2015, 17, 1175–1179. [Google Scholar] [CrossRef]
- Diversified Enterprises. Surface Energy Data for PE: Poly(methylmethacrylate), CAS # 9002-88-4. 2009. Available online: http://www.accudynetest.com/polymer_surface_data/polyethylene.pdf (accessed on 4 January 2022).
- Subedi, D.; Tyata, R.; Shrestha, A.; Baral, D.; Madhup, D.; Wong, C.S. An atmospheric pressure non-thermal plasma jet in nitrogen for surface modification of polyethylene. J. Sci. Technol. Trop. 2010, 6, 47–49. [Google Scholar]
- Chen, Q.; Mertens, J.; Hubert, J.; Baneton, J.; Liu, Q.; Wallaert, G.; Delplancke, M.P.; Reniers, F. Synthesis of TiO2 porous films by atmospheric dielectric barrier discharge plasma at room temperature. In Proceedings of the 22nd International Symposium on Plasma Chemistry, Antwerp, Belgium, 5–10 July 2015; Number P-III-6-10. pp. 1–3. [Google Scholar]
- Ichiki, R.; Kono, M.; Kanbara, Y.; Okada, T.; Onomoto, T.; Tachibana, K.; Furuki, T.; Kanazawa, S. Controlling nitrogen dose amount in atmospheric-pressure plasma jet nitriding. Metals 2019, 9, 714. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.C.; Yang, Y.J. The increase of the jet size of an atmospheric-pressure plasma jet by ambient air control. IEEE Trans. Plasma Sci. 2010, 38, 496–499. [Google Scholar] [CrossRef]
- Crow. Polymer Properties Database. 2021. Available online: https://polymerdatabase.com/polymer%20physics/sigma.html (accessed on 4 January 2022).
- Diversified Enterprises. Surface Energy Data for PMMA: Poly(methylmethacrylate), CAS # 9011-14-7. 2009. Available online: http://www.accudynetest.com/polymer_surface_data/pmma_polymethylmethacrylate.pdf (accessed on 4 January 2022).
- Shao, T.; Zhou, Y.; Zhang, C.; Yang, W.; Niu, Z.; Ren, C. Surface modification of polymethyl-methacrylate using atmospheric pressure argon plasma jets to improve surface flashover performance in vacuum. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1747–1754. [Google Scholar] [CrossRef]
- Abdel–Fattah, E. Surface activation of poly(methyl methacrylate) with atmospheric pressure Ar + H2O plasma. Coatings 2019, 9, 228. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzec, D.; Hoppenthaler, F.; Andres, T.; Guentner, S.; Lerach, S. Application of Nitrogen Piezoelectric Direct Discharge for Increase in Surface Free Energy of Polymers. Plasma 2022, 5, 111-129. https://doi.org/10.3390/plasma5010009
Korzec D, Hoppenthaler F, Andres T, Guentner S, Lerach S. Application of Nitrogen Piezoelectric Direct Discharge for Increase in Surface Free Energy of Polymers. Plasma. 2022; 5(1):111-129. https://doi.org/10.3390/plasma5010009
Chicago/Turabian StyleKorzec, Dariusz, Florian Hoppenthaler, Thomas Andres, Sophia Guentner, and Simona Lerach. 2022. "Application of Nitrogen Piezoelectric Direct Discharge for Increase in Surface Free Energy of Polymers" Plasma 5, no. 1: 111-129. https://doi.org/10.3390/plasma5010009
APA StyleKorzec, D., Hoppenthaler, F., Andres, T., Guentner, S., & Lerach, S. (2022). Application of Nitrogen Piezoelectric Direct Discharge for Increase in Surface Free Energy of Polymers. Plasma, 5(1), 111-129. https://doi.org/10.3390/plasma5010009