Bulk Polymerization of PEGDA in Spruce Wood Using a DBD Plasma-Initiated Process to Improve the Flexural Strength of the Wood–Polymer Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. DBD Plasma Treatment
2.3. Drop Casting of PEGDA and Plasma Polymerization
2.4. FT-IR Characterization and Analysis
2.5. Wood Treatment to Form WPCs
2.6. Flexural Test
3. Results and Discussion
3.1. FT-IR Analysis
3.2. Kinetics Study
3.3. Characterization of the Wood–Polymer Composites (WPCs)
3.4. Flexural Test of the WPCs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Temiz, A.; Terziev, N.; Eikenes, M.; Hafren, J. Effect of accelerated weathering on surface chemistry of modified wood. Appl. Surf. Sci. 2007, 253, 5355–5362. [Google Scholar] [CrossRef]
- Ozdemir, T.; Temiz, A.; Aydin, I. Effect of Wood Preservatives on Surface Properties of Coated Wood. Adv. Mater. Sci. Eng. 2015, 2015, 631835. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Manrich, S.; Agnelli, J.A.M. The effect of chemical treatment of wood and polymer characteristics on the properties of wood–polymer composites. J. Appl. Polym. Sci. 1989, 37, 1777–1790. [Google Scholar] [CrossRef]
- Ermeydan, M.A. Modification of spruce wood by UV-crosslinked PEG hydrogels inside wood cell walls. React. Funct. Polym. 2018, 131, 100–106. [Google Scholar] [CrossRef]
- Smoak, E.M.; Henricus, M.M.; Banerjee, I.A. In situ photopolymerization of PEGDA-protein hydrogels on nanotube surfaces. J. Appl. Polym. Sci. 2010, 118, 2562–2571. [Google Scholar] [CrossRef]
- Das, D.; Pham, T.T.H.; Noh, I. Characterizations of hyaluronate-based terpolymeric hydrogel synthesized via free radical polymerization mechanism for biomedical applications. Colloids Surf. B Biointerfaces 2018, 170, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Korkut, S.; Hiziroglu, S. Effect of heat treatment on mechanical properties of hazelnut wood (Corylus colurna L.). Mater. Des. 2009, 30, 1853–1858. [Google Scholar] [CrossRef]
- Srinivas, K.; Pandey, K.K. Effect of Heat Treatment on Color Changes, Dimensional Stability, and Mechanical Properties of Wood. J. Wood Chem. Technol. 2012, 32, 304–316. [Google Scholar] [CrossRef]
- Kataoka, Y.; Kiguchi, M.; Williams, R.S.; Evans, P.D. Violet light causes photodegradation of wood beyond the zone affected by ultraviolet radiation. Wood Res. Technol. 2007, 61, 23–27. [Google Scholar] [CrossRef]
- Chen, K.; Cao, M.; Qiao, Z.; He, L.; Wei, Y.; Ji, H.-F. Polymerization of Solid-State 2,2′-Bithiophene Thin Film or Doped in Cellulose Paper Using DBD Plasma and Its Applications in Paper-Based Electronics. ACS Appl. Polym. Mater. 2020, 2, 1518–1527. [Google Scholar] [CrossRef]
- Hegemann, D.; Nisol, B.; Gaiser, S.; Watson, S.; Wertheimer, M.R. Energy conversion efficiency in low- and atmospheric-pressure plasma polymerization processes with hydrocarbons. Phys. Chem. Chem. Phys. 2019, 21, 8698–8708. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ji, H.-F. Electric field-directed assembly of gold and platinum nanowires from an electrolysis process. Electrochem. Commun. 2008, 10, 222–224. [Google Scholar] [CrossRef]
- Li, Y.; Kojtari, A.; Friedman, G.; Brooks, A.D.; Fridman, A.; Ji, H.F. Decomposition of L-valine under nonthermal dielectric barrier discharge plasma. J. Phys. Chem. B 2014, 118, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Pullagura, B.K.; Amarapalli, S.; Gundabala, V. Coupling electrohydrodynamics with photopolymerization for microfluidics-based generation of polyethylene glycol diacrylate (PEGDA) microparticles and hydrogels. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125586. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Song, L.; Niu, G.; Cao, H.; Wang, G.; Yang, H.; Zhu, S. Controllable properties and microstructure of hydrogels based on crosslinked poly(ethylene glycol) diacrylates with different molecular weights. J. Appl. Polym. Sci. 2011, 121, 531–540. [Google Scholar] [CrossRef]
- Brokken-Zijp, J.C.M.; van Asselen, O.L.J.; Kleinjan, W.E.; van de Belt, R.; de With, G. Photocatalysed (Meth)acrylate Polymerization by (Antimony-Doped) Tin Oxide Nanoparticles and Photoconduction of Their Crosslinked Polymer Nanoparticle Composites. J. Nanotechnol. 2010, 2010, 579708. [Google Scholar] [CrossRef] [Green Version]
- Pintar, A.; Batista, J.; Levec, J. In situ Fourier transform infrared spectroscopy as an efficient tool for determination of reaction kinetics. Analyst 2002, 127, 1535–1540. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.-M.; Liou, S.-J.; Chang, Y.-W. Polyacrylamide-clay nanocomposite materials prepared by photopolymerization with acrylamide as an intercalating agent. J. Appl. Polym. Sci. 2004, 91, 3489–3496. [Google Scholar] [CrossRef]
- Sawhney, A.S.; Pathak, C.P.; Van Rensburg, J.J.; Dunn, R.C.; Hubbell, J.A. Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. J. Biomed. Mater. Res. 1994, 28, 831–838. [Google Scholar] [CrossRef] [PubMed]
Sample Type | Average Stress at Break (MPa) | Standard Deviation (MPa) |
---|---|---|
Pristine Wood | 60.02 | 3.24 |
Wood soaked in H2O | 61.43 | 0.63 |
60% (v/v) PEGDA WPC | 77.50 | 1.69 |
100% (v/v) PEGDA WPC | 80.31 | 1.95 |
100% (v/v) PEGDA + 0.1% (w/w) Irgacure 2959 WPC | 54.95 | 2.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mieles, M.; Stitt, C.; Ji, H.-F. Bulk Polymerization of PEGDA in Spruce Wood Using a DBD Plasma-Initiated Process to Improve the Flexural Strength of the Wood–Polymer Composite. Plasma 2022, 5, 146-153. https://doi.org/10.3390/plasma5010011
Mieles M, Stitt C, Ji H-F. Bulk Polymerization of PEGDA in Spruce Wood Using a DBD Plasma-Initiated Process to Improve the Flexural Strength of the Wood–Polymer Composite. Plasma. 2022; 5(1):146-153. https://doi.org/10.3390/plasma5010011
Chicago/Turabian StyleMieles, Matthew, Callie Stitt, and Hai-Feng Ji. 2022. "Bulk Polymerization of PEGDA in Spruce Wood Using a DBD Plasma-Initiated Process to Improve the Flexural Strength of the Wood–Polymer Composite" Plasma 5, no. 1: 146-153. https://doi.org/10.3390/plasma5010011
APA StyleMieles, M., Stitt, C., & Ji, H. -F. (2022). Bulk Polymerization of PEGDA in Spruce Wood Using a DBD Plasma-Initiated Process to Improve the Flexural Strength of the Wood–Polymer Composite. Plasma, 5(1), 146-153. https://doi.org/10.3390/plasma5010011