Bulk Polymerization of PEGDA in Spruce Wood Using a DBD Plasma-Initiated Process to Improve the Flexural Strength of the Wood–Polymer Composite
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. DBD Plasma Treatment
2.3. Drop Casting of PEGDA and Plasma Polymerization
2.4. FT-IR Characterization and Analysis
2.5. Wood Treatment to Form WPCs
2.6. Flexural Test
3. Results and Discussion
3.1. FT-IR Analysis
3.2. Kinetics Study
3.3. Characterization of the Wood–Polymer Composites (WPCs)
3.4. Flexural Test of the WPCs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Temiz, A.; Terziev, N.; Eikenes, M.; Hafren, J. Effect of accelerated weathering on surface chemistry of modified wood. Appl. Surf. Sci. 2007, 253, 5355–5362. [Google Scholar] [CrossRef]
- Ozdemir, T.; Temiz, A.; Aydin, I. Effect of Wood Preservatives on Surface Properties of Coated Wood. Adv. Mater. Sci. Eng. 2015, 2015, 631835. [Google Scholar] [CrossRef]
- Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Manrich, S.; Agnelli, J.A.M. The effect of chemical treatment of wood and polymer characteristics on the properties of wood–polymer composites. J. Appl. Polym. Sci. 1989, 37, 1777–1790. [Google Scholar] [CrossRef]
- Ermeydan, M.A. Modification of spruce wood by UV-crosslinked PEG hydrogels inside wood cell walls. React. Funct. Polym. 2018, 131, 100–106. [Google Scholar] [CrossRef]
- Smoak, E.M.; Henricus, M.M.; Banerjee, I.A. In situ photopolymerization of PEGDA-protein hydrogels on nanotube surfaces. J. Appl. Polym. Sci. 2010, 118, 2562–2571. [Google Scholar] [CrossRef]
- Das, D.; Pham, T.T.H.; Noh, I. Characterizations of hyaluronate-based terpolymeric hydrogel synthesized via free radical polymerization mechanism for biomedical applications. Colloids Surf. B Biointerfaces 2018, 170, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Korkut, S.; Hiziroglu, S. Effect of heat treatment on mechanical properties of hazelnut wood (Corylus colurna L.). Mater. Des. 2009, 30, 1853–1858. [Google Scholar] [CrossRef]
- Srinivas, K.; Pandey, K.K. Effect of Heat Treatment on Color Changes, Dimensional Stability, and Mechanical Properties of Wood. J. Wood Chem. Technol. 2012, 32, 304–316. [Google Scholar] [CrossRef]
- Kataoka, Y.; Kiguchi, M.; Williams, R.S.; Evans, P.D. Violet light causes photodegradation of wood beyond the zone affected by ultraviolet radiation. Wood Res. Technol. 2007, 61, 23–27. [Google Scholar] [CrossRef]
- Chen, K.; Cao, M.; Qiao, Z.; He, L.; Wei, Y.; Ji, H.-F. Polymerization of Solid-State 2,2′-Bithiophene Thin Film or Doped in Cellulose Paper Using DBD Plasma and Its Applications in Paper-Based Electronics. ACS Appl. Polym. Mater. 2020, 2, 1518–1527. [Google Scholar] [CrossRef]
- Hegemann, D.; Nisol, B.; Gaiser, S.; Watson, S.; Wertheimer, M.R. Energy conversion efficiency in low- and atmospheric-pressure plasma polymerization processes with hydrocarbons. Phys. Chem. Chem. Phys. 2019, 21, 8698–8708. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ji, H.-F. Electric field-directed assembly of gold and platinum nanowires from an electrolysis process. Electrochem. Commun. 2008, 10, 222–224. [Google Scholar] [CrossRef]
- Li, Y.; Kojtari, A.; Friedman, G.; Brooks, A.D.; Fridman, A.; Ji, H.F. Decomposition of L-valine under nonthermal dielectric barrier discharge plasma. J. Phys. Chem. B 2014, 118, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Pullagura, B.K.; Amarapalli, S.; Gundabala, V. Coupling electrohydrodynamics with photopolymerization for microfluidics-based generation of polyethylene glycol diacrylate (PEGDA) microparticles and hydrogels. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125586. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Song, L.; Niu, G.; Cao, H.; Wang, G.; Yang, H.; Zhu, S. Controllable properties and microstructure of hydrogels based on crosslinked poly(ethylene glycol) diacrylates with different molecular weights. J. Appl. Polym. Sci. 2011, 121, 531–540. [Google Scholar] [CrossRef]
- Brokken-Zijp, J.C.M.; van Asselen, O.L.J.; Kleinjan, W.E.; van de Belt, R.; de With, G. Photocatalysed (Meth)acrylate Polymerization by (Antimony-Doped) Tin Oxide Nanoparticles and Photoconduction of Their Crosslinked Polymer Nanoparticle Composites. J. Nanotechnol. 2010, 2010, 579708. [Google Scholar] [CrossRef][Green Version]
- Pintar, A.; Batista, J.; Levec, J. In situ Fourier transform infrared spectroscopy as an efficient tool for determination of reaction kinetics. Analyst 2002, 127, 1535–1540. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.-M.; Liou, S.-J.; Chang, Y.-W. Polyacrylamide-clay nanocomposite materials prepared by photopolymerization with acrylamide as an intercalating agent. J. Appl. Polym. Sci. 2004, 91, 3489–3496. [Google Scholar] [CrossRef]
- Sawhney, A.S.; Pathak, C.P.; Van Rensburg, J.J.; Dunn, R.C.; Hubbell, J.A. Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. J. Biomed. Mater. Res. 1994, 28, 831–838. [Google Scholar] [CrossRef] [PubMed]
Sample Type | Average Stress at Break (MPa) | Standard Deviation (MPa) |
---|---|---|
Pristine Wood | 60.02 | 3.24 |
Wood soaked in H2O | 61.43 | 0.63 |
60% (v/v) PEGDA WPC | 77.50 | 1.69 |
100% (v/v) PEGDA WPC | 80.31 | 1.95 |
100% (v/v) PEGDA + 0.1% (w/w) Irgacure 2959 WPC | 54.95 | 2.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mieles, M.; Stitt, C.; Ji, H.-F. Bulk Polymerization of PEGDA in Spruce Wood Using a DBD Plasma-Initiated Process to Improve the Flexural Strength of the Wood–Polymer Composite. Plasma 2022, 5, 146-153. https://doi.org/10.3390/plasma5010011
Mieles M, Stitt C, Ji H-F. Bulk Polymerization of PEGDA in Spruce Wood Using a DBD Plasma-Initiated Process to Improve the Flexural Strength of the Wood–Polymer Composite. Plasma. 2022; 5(1):146-153. https://doi.org/10.3390/plasma5010011
Chicago/Turabian StyleMieles, Matthew, Callie Stitt, and Hai-Feng Ji. 2022. "Bulk Polymerization of PEGDA in Spruce Wood Using a DBD Plasma-Initiated Process to Improve the Flexural Strength of the Wood–Polymer Composite" Plasma 5, no. 1: 146-153. https://doi.org/10.3390/plasma5010011
APA StyleMieles, M., Stitt, C., & Ji, H.-F. (2022). Bulk Polymerization of PEGDA in Spruce Wood Using a DBD Plasma-Initiated Process to Improve the Flexural Strength of the Wood–Polymer Composite. Plasma, 5(1), 146-153. https://doi.org/10.3390/plasma5010011