Recent Technological Advances in Transparent Ceramics
1. Introduction
2. Dr. Adrian Goldstein Author of Some Pioneering Contributions to the Transparent Ceramics Field
Dr. Adrian Goldstein, together with Dr. Andreas Krell and Prof. Zeev Burshtein, co-authored the excellent and comprehensive book Transparent Ceramics: Materials, Engineering and Applications, published by John Wiley & Sons, New York, in 2020.
3. Works Collected in This Special Issue
Acknowledgments
Conflicts of Interest
References
- Coble, R.L. Sintering of Alumina: Effect of Atmospheres. J. Amer. Ceram. Soc. 1962, 54, 123–127. [Google Scholar] [CrossRef]
- Goldstein, A.; Krell, A.; Burshtein, Z. Transparent Ceramics: Materials, Engineering and Applications; Wiley: New York, NY, USA, 2020. [Google Scholar]
- Goldstein, A.; Krell, A. Transparent Ceramics at 50: Progress made and Further Prospects. J. Am. Ceram. Soc. 2016, 99, 3173–3197. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.L.; Lupei, V. Ceramic Lasers; CUP: Cambridge, UK, 2013. [Google Scholar]
- Kong, L.B.; Huang, Y.Z.; Que, W.X.; Zhang, T.S.; Li, S.; Zhang, J.; Dong, Z.L.; Tang, D.Y. Transparent Ceramics; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Burke, J.E. Lucalox alumina: The ceramics which revolutionized outdoor lighting. MRS Bull. 1996, 21, 61–68. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y. Fabrication and optical properties of highly transparent MgO ceramics by spark plasma sintering. Scr. Mater. 2019, 162, 14–17. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, G.; Tomala, R.; Hreniak, D.; Wu, Y. Yb doped MgO transparent ceramics generated through the SPS method. J. Eur. Ceram. Soc. 2022, 42, 4320–4327. [Google Scholar] [CrossRef]
- Li, X.; Yin, M.; Xiao, C.; Kuang, Z.; Yu, S.; Li, X.; Jia, Z. Preparation of highly transparent mid-infrared MgF2 ceramics by low-pressure hot pressing. Opt. Mater. 2024, 157, 116286. [Google Scholar] [CrossRef]
- Zavala-Cuéllar, N.; Gómez-Solís, C.; Vallejo, M.A.; Gómez, M.R.; Cerón, P.; León-Madrid, M.I. Study of the effect of the precursor salt on the synthesis of magnesium fluoride and its influence on the optical properties. Ceram. Int. 2024, 50, 24939–24947. [Google Scholar] [CrossRef]
- Milisavljevic, I.; Zhang, M.; Jiang, Q.; Liu, Q.; Wu, Y. Transparent electro-optic ceramics: Processing, materials, and applications. J. Mater. 2025, 11, 100872. [Google Scholar] [CrossRef]
- Chen, X.; Chen, R.; Chen, Z.; Chen, J.; Shung, K.K.; Zhou, Q. Transparent lead lanthanum zirconate titanate (PLZT) ceramic fibers for high-frequency ultrasonic transducer applications. Ceram. Int. 2016, 42, 18554–18559. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, J.; Zheng, J.; Huo, T.; Dai, Y.; Wu, J. Preparation of transparent AlON ceramics with controlled shapes by a novel spontaneous coagulation casting and pressureless sintering method. Ceram. Int. 2024, 50, 22373–22380. [Google Scholar] [CrossRef]
- Yang, S.; Li, J.; Guo, H.; Mao, X.; Tian, R.; Zhang, J.; Wang, S. Reactive sintered highly transparent AlON ceramics with Y2O3-MgAl2O4-H3BO3 ternary additive. J. Am. Ceram. Soc. 2021, 104, 4304–4308. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, H.; Li, Y.; Xu, W.; Zhou, Y. Maochun Hong AlON transparent ceramics from powders synthesized by improved direct nitridation. Ceram. Int. 2023, 49, 35991–36001. [Google Scholar] [CrossRef]
- Merac, M.R.D.; Kleebe, H.-J.; Müller, M.M.; Reimanis, I.E. Fifty Years of Research and Development Coming to Fruition; Unraveling the Complex Interactions during Processing of Transparent Magnesium Aluminate (MgAl2O4) Spinel. J. Am. Ceram. Soc. 2013, 96, 3341–3365. [Google Scholar] [CrossRef]
- Cottrino, S.; Gaudisson, T.; Douillard, T.; Blanchard, N.; Meille, S.; Gremillard, L.; Mercury, M.; Le Floch, S. Effect of high pressure on microstructure and mechanical and optical properties of nano-structured MgAl2O4 spinel fabricated by High Pressure Spark Plasma Sintering. J. Eur. Ceram. Soc. 2025, 45, 117579. [Google Scholar] [CrossRef]
- Zhang, J.; Zhan, G.; He, D.; Li, D.; Li, Q.; Du, C.; Da, Q.; Liu, F.; Yan, X. Transparent diamond ceramics from diamond powder. J. Eur. Ceram. Soc. 2023, 43, 853–861. [Google Scholar] [CrossRef]
- Zhao, M.; Kou, Z.; Zhang, Y.; Peng, B.; Wang, Y.; Wang, Z.; Yin, X.; Jiang, M.; Guan, S.; Zhang, J.; et al. Superhard transparent polycrystalline cubic boron Nitride. Appl. Phys. Lett. 2021, 118, 151901–151906. [Google Scholar] [CrossRef]
- Taniguchi, T.; Akaishi, M.; Yamaoka, S. Mechanical Properties of Polycrystalline Translucent Cubic Boron Nitride as Characterized by the Vickers Indentation Method. J. Am. Ceram. Soc. 1996, 79, 547–549. [Google Scholar] [CrossRef]
- Bayya, S.S.; Villalobos, G.R.; Hunt, M.P.; Sanghera, J.S.; Sadowski, B.; Aggarwal, I.D.; Cinibulk, M.; Carney, C.; Keller, K. Development of Transparent Polycrystalline Beta-Silicon Carbide. In Proceedings of the SPIE Optical Engineering + Applications 2013, San Diego, CA, USA, 25–29 August 2013; Volume 8837, p. 88370S-1. [Google Scholar]
- Wang, X.; Lu, T.; Sun, Y. Highly doped Mn:MgAl2O4 Transparent Ceramics. Key Eng. Mater. 2008, 368–372, 414–416. [Google Scholar] [CrossRef]
- Cornu, L.; Gaudon, M. Veronique Jubera ZnAl2O4 as potential sensor: Variation of luminescence with thermal history. J. Mater. Chem. C 2013, 1, 5419–5428. [Google Scholar] [CrossRef]
- Kim, B.-N.; Hiraga, K.; Jeong, A.; Hu, C.; Suzuki, T.S.; Yun, J.-D.; Sakka, Y. Transparent ZnAl2O4 ceramics fabricated by spark plasma sintering. J. Ceram. Soc. Jpn. 2014, 122, 784–787. [Google Scholar] [CrossRef]
- Uehara, H.; Yao, W.; Ikesue, A.; Noto, H.; Chen, H.; Hishinuma, Y.; Muroga, T.; Yasuhara, R. Dy-doped CaF2 transparent ceramics as a functional medium in the broadband mid-infrared spectral region. Opt. Contin. 2020, 3, 1811–1818. [Google Scholar] [CrossRef]
- Yu, S.; Wu, Y. Fabrication, microstructure and optical properties of Ce:SrF2 transparent ceramics. Opt. Mater. 2020, 105, 109898. [Google Scholar] [CrossRef]
- Zhang, G.; Carloni, D.; Wu, Y. Ultraviolet emission transparent Gd:YAG ceramics processed by solid-state reaction spark plasma sintering. J. Am. Ceram. Soc. 2020, 103, 839–848. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Wei, N.; Qi, J.; Lu, Z.; Zhang, Q.; Hua, T.; Zeng, Q.; Lu, T. The roles of cation additives on the color center and optical properties of Yb:YAG transparent ceramic. J. Eur. Ceram. Soc. 2018, 38, 1957–1965. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, L.; Kisslinger, K.; Wu, Y. Transparent Li0.05Y3Al5O12:Ce3+0.01 Ceramics for Thermal Neutron Detection. J. Am. Ceram. Soc. 2013, 96, 1067–1069. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Hu, S.; Zhou, G.; Qin, X.; Wang, S. Preparation of Ce-Doped Gd3(Al, Ga)5O12 Nanopowders via Microwave-Assisted Homogenization Precipitation for Transparent Ceramic Scintillators. Materials 2024, 17, 1258. [Google Scholar] [CrossRef]
- Kalaivani, S.; Ezhilan, M.; Deepa, M.; Kannan, S. Rare earth doped Zirconia: Structure, physicochemical properties and recent advancements in technological applications. Prog. Solid State Chem. 2025, 79, 100524. [Google Scholar] [CrossRef]
- Furuse, H.; Kato, D.; Morita, K.; Suzuki, T.S.; Kim, B.-N. Characterization of Transparent Fluorapatite Ceramics Fabricated by Spark Plasma Sintering. Materials 2022, 15, 8157. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, G.; Gheorghe, L.; Voicu, F.; Hau, S.; Gheorghe, C.; Croitoru, G.; Enculescu, M.; Yavetskiy, R.P. Highly transparent Yb:Y2O3 ceramics obtained by solid-state reaction and combined sintering procedures. Ceram. Int. 2019, 45, 3217–3222. [Google Scholar] [CrossRef]
- Yin, D.; Ma, J.; Liu, P.; Yao, B.; Wang, J.; Dong, Z.; Kong, L.B.; Tang, D. Submicron-grained Yb:Lu2O3 transparent ceramics with lasing quality. J. Am. Ceram. Soc. 2019, 102, 2587–2592. [Google Scholar] [CrossRef]
- Allix, M.; Alahrache, S.; Fayon, F.; Suchomel, M.; Porcher, F.; Cardinal, T.; Matzen, G. Highly transparent BaAl4O7 polycrystalline ceramic obtained by full crystallization from glass. Adv. Mater. 2012, 24, 5570–5575. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, A.; Ruginets, R.; Geffen, Y. Microwave sintering of amorphous silica powders. J. Mater. Sci. Lett. 1997, 16, 310–312. [Google Scholar] [CrossRef]
- Goldstein, A.; Goldenberg, A.; Hefet, M. Transparent polycrystalline MgAl2O4 spinel with submicron grains by low temperature sintering. J. Ceram. Soc. Jpn. 2009, 117, 1281–1283. [Google Scholar] [CrossRef]
- Goldstein, A.; Yeshurun, Y.; Vulfson, M.; Kravits, H. Fabrication of Transparent Polycrystalline ZnAl2O4—A New Optical Bulk Ceramic. J. Am. Ceram. Soc. 2012, 95, 879–882. [Google Scholar] [CrossRef]
- Zandona, A.; Castaing, V.; Shames, A.I.; Helsch, G.; Deubener, J.; Becerro, A.I.; Allix, M.; Goldstein, A. Oxidation and coordination states assumed by transition metal dopants in an invert ultrabasic silicate glass. J. Non-Cryst. Solids 2023, 603, 122094. [Google Scholar] [CrossRef]
- Shirakov, A.; Burshtein, Z.; Goldstein, A.; Frumker, E.; Ishaaya, A. Use of Co2+:MgAl2O4 transparent ceramics in passive Q-switching of an Er:glass laser at 1.53 μm. Opt. Express 2020, 28, 21956–21970. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, Y.; Shemes, A.; Goldstein, A. Influence of inversion level on the optical absorption spectra of Ti-doped transparent MgGa2O4 ceramics. J. Am. Ceram. Soc. 2022, 105, 5944–5955. [Google Scholar] [CrossRef]
- Wang, X.; Xing, D.; Wang, Y.; Wang, J.; Ma, J.; Liu, P.; Zhang, J.; Tang, D. Optimizing Sintering Conditions for Y2O3 Ceramics: A Study of Atmosphere-Dependent Microstructural Evolution and Optical Performance. Ceramics 2025, 8, 66. [Google Scholar] [CrossRef]
- Moriones, J.; Osés, J.; Amézqueta, P.; Palacio, J.F.; De Ara, J.F.; Almandoz, E. Enhancement of Sol–Gel Coatings for Photoprotection of Rosé Wines. Ceramics 2025, 8, 17. [Google Scholar] [CrossRef]
- Li, X.; Hu, C.; Guo, L.; Wu, J.; Toci, G.; Pirri, A.; Patrizi, B.; Vannini, M.; Liu, Q.; Hreniak, D.; et al. Optimization of Yb:CaF2 Transparent Ceramics by Air Pre-Sintering and Hot Isostatic Pressing. Ceramics 2024, 7, 1053–1065. [Google Scholar] [CrossRef]
- Zegadi, A.; Ayadi, A.; Khellaf, I.; Hamidouche, M.; Fantozzi, G.; Durán, A.; Castro, Y. Improving the Transparency of a MgAl2O4 Spinel Damaged by Sandblasting through a SiO2-ZrO2 Coating. Ceramics 2024, 7, 743–758. [Google Scholar] [CrossRef]
- Prokop, K.A.; Cottrino, S.; Garnier, V.; Fantozzi, G.; Guyot, Y.; Boulon, G.; Guzik, M. Enhancing Transparency in Non-Cubic Calcium Phosphate Ceramics: Effect of Starting Powder, LiF Doping, and Spark Plasma Sintering Parameters. Ceramics 2024, 7, 607–624. [Google Scholar] [CrossRef]
- Picelli, F.; Hostaša, J.; Piancastelli, A.; Biasini, V.; Melandri, C.; Esposito, L. Beyond Scanning Electron Microscopy: Comprehensive Pore Analysis in Transparent Ceramics Using Optical Microscopy. Ceramics 2024, 7, 401–410. [Google Scholar] [CrossRef]
- Viers, L.; Guené-Girard, S.; Dalla-Barba, G.; Jubéra, V.; Cormier, É.; Boulesteix, R.; Maître, A. Optical and Spectroscopic Properties of Ho:Lu2O3 Transparent Ceramics Elaborated by Spark Plasma Sintering. Ceramics 2024, 7, 208–221. [Google Scholar] [CrossRef]
- Hormadaly, J. Glass Composition for Coating and Bonding of Polycrystalline Spinel Ceramic Substrates. Ceramics 2024, 7, 101–114. [Google Scholar] [CrossRef]
- Hoggas, K.; Benaissa, S.; Cherouana, A.; Bouheroum, S.; Assali, A.; Hamidouche, M.; Fantozzi, G. Mechanical Behavior of Transparent Spinel Fabricated by Spark Plasma Sintering. Ceramics 2023, 6, 1191–1209. [Google Scholar] [CrossRef]
- Goldstein, A.; Zandonà, A. Speciation of 3d Elements in Spinel Versus Corundum: Elucidating the Interplay Between Ligand Field, Structural Dissimilarities and Processing Conditions. Ceramics 2025, 8, 16. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y. Recent Technological Advances in Transparent Ceramics. Ceramics 2025, 8, 98. https://doi.org/10.3390/ceramics8030098
Wu Y. Recent Technological Advances in Transparent Ceramics. Ceramics. 2025; 8(3):98. https://doi.org/10.3390/ceramics8030098
Chicago/Turabian StyleWu, Yiquan. 2025. "Recent Technological Advances in Transparent Ceramics" Ceramics 8, no. 3: 98. https://doi.org/10.3390/ceramics8030098
APA StyleWu, Y. (2025). Recent Technological Advances in Transparent Ceramics. Ceramics, 8(3), 98. https://doi.org/10.3390/ceramics8030098