A Facile Microwave-Assisted Hydrothermal (MAH) Method of CdWO4/CdMoO4 Heterostructures and Their Photocatalytic Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MAH | microwave-assisted hydrothermal |
XRD | X-ray diffraction |
UV-Vis | ultraviolet-visible spectroscopy |
FESEM | field-emission scanning electron microscopy |
References
- Andrade Neto, N.F.; Zanatta, P.; Nascimento, L.E.; Nascimento, R.M.; Bomio, M.R.D.; Motta, F.V. Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method. J. Electron. Mater. 2019, 48, 3145–3156. [Google Scholar] [CrossRef]
- Garcia, L.M.P.; Tavares, M.T.S.; Andrade Neto, N.F.; Nascimento, R.M.; Paskocimas, C.A.; Longo, E.; Bomio, M.R.D.; Motta, F.V. Photocatalytic activity and photoluminescence properties of TiO2, In2O3, TiO2/In2O3 thin films multilayer. J. Mater. Sci. Mater. Electron. 2018, 29, 6530–6542. [Google Scholar] [CrossRef]
- Cabral, R.L.B.; Galvão, F.M.F.; de Souto Silva, K.K.O.; Felipe, B.H.S.; de Andrade Neto, N.F.; de Almeida Fechine, P.B.; Zille, A.; Kim, S.; do Nascimento, J.H.O. Surface modification of ZnO quantum dots coated polylactic acid knitted fabric for photocatalytic application. J. Appl. Polym. Sci. 2022, 139, e52381. [Google Scholar] [CrossRef]
- Moreira, M.D.D.; Andrade Neto, N.F.; Oliveira, F.K.F.; Paskocimas, C.A.; Bomio, M.R.D.; Motta, F.V. Study of the bactericidal properties of ZnO/Ag0 nanoparticles in the treatment of raw sewage effluents. Int. J. Ceram. Eng. Sci. 2023, 5, e10173. [Google Scholar] [CrossRef]
- Wang, B.; Wang, C.; Tang, Y.; Yang, H.; Tian, Y.; Yu, X.; Li, Q. High-efficiency photodegradation of levofloxacin enabled by hybrid Ag2MoO4@AgCl composites: Performance, pathways, and mechanism insight. Appl. Surf. Sci. 2025, 697, 162970. [Google Scholar] [CrossRef]
- Fu, S.; Du, Y.; Bie, J.; Huang, Z.; Hu, H.; Huang, Q.; Zhu, H.; Yuan, W.; Li, L.; Liu, B. Facile fabrication of Z-scheme Ag2WO4/BiOBr heterostructure with oxygen vacancies for improved visible-light photocatalytic performance. J. Sci. Adv. Mater. Devices 2023, 8, 100561. [Google Scholar] [CrossRef]
- Keerthana, S.P.; Yuvakkumar, R.; Ravi, G.; Arun, A.; Arunmetha, S. A novel photocatalyst: Gd2MoO6 nanoparticles with carbon composites for wastewater treatment. Ceram. Int. 2024, 50, 40932–40942. [Google Scholar] [CrossRef]
- Neethu, P.P.; Kunjumon, B.; Aswin, P.; Venkatesha, N.J.; Sakthivel, A. Hexanol conversion over mixed metal oxides derived from hydrotalcite: Influence of molybdate species on catalytic activity. Mol. Catal. 2024, 558, 114000. [Google Scholar] [CrossRef]
- Komatireddy, D.; Andem, S.; Gotipamul, P.P.; Rajankumar, V.V.; Chidambaram, S. Harnessing the potential of transition metal tungstates (MWO4, M = Ni, Co, Cu, and Zn) for high-performance asymmetric supercapacitors. J. Energy Storage 2024, 100, 113557. [Google Scholar] [CrossRef]
- Mostafa, R.S.; Elseman, A.M.; Al-Gamal, A.G.; Khalil, M.M.H.; Rashad, M.M. Metal tungstate as an electron transport layer: Diverse preparation methods and photovoltaic applications. Sol. Energy 2024, 283, 113007. [Google Scholar] [CrossRef]
- Lahootifar, Z.; Habibi-Yangjeh, A.; Khataee, A. One-pot decoration of CdS and CdMoO4 nanoparticles on g-C3N4 nanoplates: Boosted photocatalytic degradation of tetracycline. J. Alloys Compd. 2023, 969, 172481. [Google Scholar] [CrossRef]
- Chu, M.; Ma, H.; Liu, Z.; Jiang, X.; Kang, N.; Liu, X.; Xie, G. Template-synthesized CdWO4/Cd0.5Zn0.5S hollow microsphere photocatalyst for high-efficient hydrogen evolution under visible light. Int. J. Hydrogen Energy 2024, 90, 874–884. [Google Scholar] [CrossRef]
- Andrade Neto, N.F.; Ramalho, O.B.M.; Silva, J.M.P.; Teodoro, M.D.; Bomio, M.R.D.; Motta, F.V. Influence of Solvent on the Synthesis of CdW(1−x)Mo(x)O4 by a Microwave-Assisted Hydrothermal/Solvothermal Method and Its Photocatalytic Properties. J. Electron. Mater. 2024, 54, 2870–2884. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, J.; Zhao, C.; Yue, L.; Ren, X.; Zeng, Z.; Hu, X.; Wu, Y.; He, Y. S-scheme Bi2O3/CdMoO4 hybrid with highly efficient charge separation for photocatalytic N2 fixation and tetracycline Degradation: Fabrication, catalytic Optimization, physicochemical studies. Sep. Purif. Technol. 2023, 325, 124665. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Geng, L.; Wang, H.; Cao, J.; Chen, S. Successful synthesis of single scheelite-structured CdW1−xMoxO4 continuous solid-solution and its composition-dependent optoelectronic properties. J. Solid State Chem. 2018, 266, 74–82. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhang, Y.; AlFaify, S.A.; Li, G.; Ashraf, I.M. Recent advances in Cd-based heterojunctions: From synthesis strategies to photocatalytic performance. J. Alloys Compd. 2025, 1010, 178309. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, T.; Li, Z.; Zhu, W.; Li, L. Enhanced photocatalytic performance of S-scheme CdMoO4/CdO nanosphere photocatalyst. J. Mater. Sci. Technol. 2024, 179, 198–207. [Google Scholar] [CrossRef]
- Eghbali-Arani, M.; Pourmasoud, S.; Ahmadi, F.; Rahimi-Nasrabadi, M.; Ameri, V.; Sobhani-Nasab, A. Optimization and detailed stability study on coupling of CdMoO4 into BaWO4 for enhanced photodegradation and removal of organic contaminant. Arab. J. Chem. 2020, 13, 2425–2438. [Google Scholar] [CrossRef]
- He, J.; Zhang, L.; Li, N.; Li, X.; Ran, W.; Li, W.; Yan, T. Regulation of the carrier migration path from type II to S-scheme over CdS-loaded CdWO4 polymorphs to boost photocatalytic H2 evolution. J. Catal. 2024, 430, 115318. [Google Scholar] [CrossRef]
- Li, M.; Chen, B.; Zhang, C.; Wang, X.; Wu, F.; Zhao, R. Crystallization and up-/down-conversion luminescence of size-dependent CdWO4:Yb3+, RE3+ (RE = Ho and Er). Opt. Mater. 2023, 142, 113995. [Google Scholar] [CrossRef]
- Rao, A.V.; Narsimha, K.; Swarupa, G.; Anuradha, N.; Kumar, B.K.; Reddy, D.R.; Upender, G.; Kumar, B.V. Sn doped CdWO4 nanorods for augmented photodegradation of methyl orange. Mater. Lett. 2023, 353, 135304. [Google Scholar]
- Tolvaj, L.; Mitsui, K.; Varga, D. Validity limits of Kubelka–Munk theory for DRIFT spectra of photodegraded solid wood. Wood Sci. Technol. 2011, 45, 135–146. [Google Scholar] [CrossRef]
- Wood, D.L.; Tauc, J. Weak Absorption Tails in Amorphous Semiconductors. Phys. Rev. B 1972, 5, 3144–3151. [Google Scholar] [CrossRef]
- Harshan, H.; Priyanka, K.P.; Sreedevi, A.; Jose, A.; Varghese, T. Structural, optical and magnetic properties of nanophase NiWO4 for potential applications. Eur. Phys. J. B 2018, 91, 287. [Google Scholar] [CrossRef]
- Shanmugam, R.; Alagumalai, K.; Chen, S.-M.; Ganesan, T. Electrochemical evaluation of organic pollutant estradiol in industrial effluents. J. Environ. Chem. Eng. 2021, 9, 105723. [Google Scholar] [CrossRef]
- Madhusudan, P.; Zhang, J.; Yu, J.; Cheng, B.; Xu, D.; Zhang, J. One-pot template-free synthesis of porous CdMoO4 microspheres and their enhanced photocatalytic activity. Appl. Surf. Sci. 2016, 387, 202–213. [Google Scholar] [CrossRef]
- Li, G.; Yang, C.; He, Q.; Liu, J. Ag-based photocatalytic heterostructures: Construction and photocatalytic energy conversion application. J. Environ. Chem. Eng. 2022, 10, 107374. [Google Scholar] [CrossRef]
- Ai, L.; Zhang, X.; Tan, C.; Zha, M.; Li, Y.; Guo, N.; Jia, D.; Wang, L. Engineering CQDs/Bi2WO6 heterostructure for efficient photocatalytic CO2 reduction and degradation dye via S-scheme charge transfer. J. Mol. Liq. 2025, 425, 127233. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Chen, X.; Zhu, W.; Guo, X.; Zhao, F. Automated kinetics measurement for homogeneous photocatalytic reactions in continuous microflow. Artif. Intell. Chem. 2024, 2, 100066. [Google Scholar] [CrossRef]
- Andrade Neto, N.F.; Dias, B.P.; Tranquilin, R.L.; Longo, E.; Li, M.; Bomio, M.R.D.; Motta, F.V. Synthesis and characterization of Ag+ and Zn2+ co-doped CaWO4 nanoparticles by a fast and facile sonochemical method. J. Alloys Compd. 2020, 823, 153617. [Google Scholar]
- Zhang, L.; Zhang, X.; Lu, G. Band alignment in two-dimensional halide perovskite heterostructures: Type I or type II? J. Phys. Chem. Lett. 2020, 11, 2910–2916. [Google Scholar] [CrossRef]
Sample | CdWO4 | CdMoO4 | ||
---|---|---|---|---|
FWHM (cm−1) | Crystallinity | FWHM (cm−1) | Crystallinity | |
0Mo | 8.46223 | 100% | - | - |
10Mo | 12.25424 | 69.1% | 24.61730 | 85.1% |
20Mo | 15.12236 | 55.9% | 20.95708 | 100% |
30Mo | 15.88206 | 53.3% | 23.93056 | 87.6% |
Sample | Kinetic Constant (k) × 10−2 | R2 |
---|---|---|
Photolysis | 0.11 | 0.855 |
0Mo | 1.19 | 0.941 |
10Mo | 1.73 | 0.994 |
20Mo | 2.06 | 0.996 |
30Mo | 1.53 | 0.929 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade Neto, N.F.; Ramalho, O.B.M.; Teodoro, M.D.; Bomio, M.R.D.; Motta, F.V. A Facile Microwave-Assisted Hydrothermal (MAH) Method of CdWO4/CdMoO4 Heterostructures and Their Photocatalytic Properties. Ceramics 2025, 8, 52. https://doi.org/10.3390/ceramics8020052
Andrade Neto NF, Ramalho OBM, Teodoro MD, Bomio MRD, Motta FV. A Facile Microwave-Assisted Hydrothermal (MAH) Method of CdWO4/CdMoO4 Heterostructures and Their Photocatalytic Properties. Ceramics. 2025; 8(2):52. https://doi.org/10.3390/ceramics8020052
Chicago/Turabian StyleAndrade Neto, Nivaldo F., Onecima B. M. Ramalho, Marcio D. Teodoro, Mauricio R. D. Bomio, and Fabiana V. Motta. 2025. "A Facile Microwave-Assisted Hydrothermal (MAH) Method of CdWO4/CdMoO4 Heterostructures and Their Photocatalytic Properties" Ceramics 8, no. 2: 52. https://doi.org/10.3390/ceramics8020052
APA StyleAndrade Neto, N. F., Ramalho, O. B. M., Teodoro, M. D., Bomio, M. R. D., & Motta, F. V. (2025). A Facile Microwave-Assisted Hydrothermal (MAH) Method of CdWO4/CdMoO4 Heterostructures and Their Photocatalytic Properties. Ceramics, 8(2), 52. https://doi.org/10.3390/ceramics8020052