Ultraviolet-Sensor Based on Tin-Doped Zinc Oxide Thin Films Grown by Spray Pyrolysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Analysis
3.2. Electric and Optical Characterization
3.3. UV Response
3.4. Sensor Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ritter, J.W.; Böckmann, C.W. Auszüge aus Briefen an den Herausgeber. Ann. Phys. 1801, 7, 501–528. [Google Scholar] [CrossRef]
- Harm, W. Biological Effects of Ultraviolet Radiation; Cambridge University Press: Cambridge, UK, 1980; p. 229. [Google Scholar]
- Diffey, B.L. Sources and measurement of ultraviolet radiation. Methods 2002, 28, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Wargent, J.J.; Jordan, B.R. From ozone depletion to agriculture: Understanding the role of UV radiation in sustainable crop production. New Phytol. 2013, 197, 1058–1076. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.W.; Williamson, C.E.; Lucas, R.M.; Robinson, S.A.; Madronich, S.; Paul, N.D.; Bornman, J.F.; Bais, A.F.; Sulzberger, B.; Wilson, S.R.; et al. Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nat. Sustain. 2019, 2, 569–579. [Google Scholar] [CrossRef]
- Huang, X.; Chalmers, A.N. Review of Wearable and Portable Sensors for Monitoring Personal Solar UV Exposure. Ann. Biomed. Eng. 2021, 49, 964–978. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Sun, Y.; He, J.; Zhou, C.; Xia, Q.; Dang, Y.; Pan, D.; Du, L. Ultraviolet-radiation technology for preservation of meat and meat products: Recent advances and future trends. Food Control 2023, 148, 109684. [Google Scholar] [CrossRef]
- Turner, J.; Igoe, D.; Parisi, A.V.; McGonigle, A.J.; Amar, A.; Wainwright, L. A review on the ability of smartphones to detect ultraviolet (UV) radiation and their potential to be used in UV research and for public education purposes. Sci. Total Environ. 2020, 706, 135873. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, J.; Gong, H.; Li, Y.; Li, L.; Wei, Q.; Tang, D. Bioinspired Self-Powered Piezoresistive Sensors for Simultaneous Monitoring of Human Health and Outdoor UV Light Intensity. ACS Appl. Mater. Inter. 2022, 14, 5101–5111. [Google Scholar] [CrossRef]
- Zhou, Y.; Qiu, X.; Wan, Z.A.; Long, Z.; Poddar, S.; Zhang, Q.; Ding, Y.; Chan, C.L.J.; Zhang, D.; Zhou, K.; et al. Halide-exchanged perovskite photodetectors for wearable visible-blind ultraviolet monitoring. Nano Energy 2022, 100, 107516. [Google Scholar] [CrossRef]
- Shur, M. Wide band gap semiconductor technology: State-of-the-art. Solid State Electron. 2019, 155, 65–75. [Google Scholar] [CrossRef]
- Monroy, E.; Omnès, F.; Calle, F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 2003, 18, R33. [Google Scholar] [CrossRef]
- BenMoussa, A.; Soltani, A.; Schühle, U.; Haenen, K.; Chong, Y.M.; Zhang, W.J.; Dahal, R.; Lin, J.Y.; Jiang, H.X.; Barkad, H.A.; et al. Recent developments of wide-bandgap semiconductor based UV sensors. Diam. Related. Mater. 2009, 18, 860–864. [Google Scholar] [CrossRef]
- Chen, H.; Liu, K.; Hu, L.; Al-Ghamdi, A.A.; Fang, X. New concept ultraviolet photodetectors. Mater. Today 2015, 18, 493–502. [Google Scholar] [CrossRef]
- Norton, D.P.; Heo, Y.W.; Ivill, M.P.; Ip, K.; Pearton, S.J.; Chisholm, M.F.; Steiner, T. ZnO: Growth, doping & processing. Mater. Today 2004, 7, 34–40. [Google Scholar] [CrossRef]
- Young, S.-J.; Yang, C.-C.; Lai, L.-T. Review—Growth of Al-, Ga-, and In-Doped ZnO Nanostructures via a Low-Temperature Process and Their Application to Field Emission Devices and Ultraviolet Photosensors. J. Electrochem. Soc. 2017, 164, B3013. [Google Scholar] [CrossRef]
- Workie, A.B.; Ningsih, H.S.; Shih, S.-J. An comprehensive review on the spray pyrolysis technique: Historical context, operational factors, classifications, and product applications. J. Anal. Appl. Pyrolysis 2023, 170, 105915. [Google Scholar] [CrossRef]
- Patil, P.S. Versatility of chemical spray pyrolysis technique. Mater. Chem. Phys. 1999, 59, 185–198. [Google Scholar] [CrossRef]
- International Centre for Difraction Data (ICCD). Powder Diffraction File Database; International Centre for Difraction Data (ICCD): Newtown Square, PA, USA, 1998. [Google Scholar]
- Tauc, J. Optical Properties of Amorphous Semiconductors. In Amorphous and Liquid Semiconductors; Tauc, J., Ed.; Springer: Boston, MA, USA, 1974; pp. 159–220. [Google Scholar]
- Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie, D.P., III. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B 2015, 252, 1700–1710. [Google Scholar] [CrossRef]
- Villegas, E.A.; Aldao, C.M.; Savu, R.; Ramajo, L.A.; Parra, R. Effects of Grain Size on the UV-Photoresponse of Zinc Oxide Thin Films Grown by Spray-Pyrolysis. Phys. Status Solidi A 2018, 215, 1800107. [Google Scholar] [CrossRef]
- Dedova, T.; Acik, I.O.; Polivtseva, S.; Krunks, M.; Gromyko, I.; Tõnsuaadu, K.; Mere, A. Influence of solution composition on sprayed ZnO nanorods properties and formation process: Thermoanalytical study of the precursors. Ceram. Int. 2019, 45, 2887–2892. [Google Scholar] [CrossRef]
- Ajili, M.; Castagné, M.; Turki, N.K. Study on the doping effect of Sn-doped ZnO thin films. Superlattices Microstruc. 2013, 53, 213–222. [Google Scholar] [CrossRef]
- Xu, Z.; Deng, H.; Li, Y.; Cheng, H. Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO:Al thin films. Mater. Sci. Semicond. Process. 2006, 9, 132–135. [Google Scholar] [CrossRef]
- Garcés, F.A.; Budini, N.; Schmidt, J.A.; Arce, R.D. Highly doped ZnO films deposited by spray-pyrolysis. Design parameters for optoelectronic applications. Thin Solid Films 2016, 605, 149–156. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, B.-O. Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method. Thin Solid Films 2003, 426, 94–99. [Google Scholar] [CrossRef]
- Rousset, J.; Tsin, F.; Guc, M.; Vidal, J.; Le Bris, A.; Thomere, A.; Izquierdo-Roca, V.; Lincot, D. Perchlorate-Induced Doping of Electrodeposited ZnO Films for Optoelectronic Applications. J. Phys. Chem. C 2016, 120, 18953–18962. [Google Scholar] [CrossRef]
- Berruet, M.; Gau, D.L.; Dalchiele, E.A.; Vázquez, M.; Marotti, R.E. Optical, electrical and structural characterization of chloride-doped ZnO nanopillars obtained by electrodeposition. J. Phys. D Appl. Phys. 2016, 49, 215103. [Google Scholar] [CrossRef]
- Panda, S.K.; Jacob, C. Preparation of transparent ZnO thin films and their application in UV sensor devices. Solid State Electron. 2012, 73, 44–50. [Google Scholar] [CrossRef]
- Chahmat, N.; Souier, T.; Mokri, A.; Bououdina, M.; Aida, M.S.; Ghers, M. Structure, microstructure and optical properties of Sn-doped ZnO thin films. J. Alloys Compd. 2014, 593, 148–153. [Google Scholar] [CrossRef]
- Jain, A.; Sagar, P.; Mehra, R.M. Band gap widening and narrowing in moderately and heavily doped n-ZnO films. Solid State Electron. 2006, 50, 1420–1424. [Google Scholar] [CrossRef]
- Yung, K.C.; Liem, H.; Choy, H.S. Enhanced redshift of the optical band gap in Sn-doped ZnO free standing films using the sol–gel method. J. Phys. D Appl. Phys. 2009, 42, 185002. [Google Scholar] [CrossRef]
- Burstein, E. Anomalous Optical Absorption Limit in InSb. Phys. Rev. 1954, 93, 632–633. [Google Scholar] [CrossRef]
- Kadri, L.; Abderrahmane, A.; Bulai, G.; Carlescu, A.; Doroftei, C.; Motrescu, I.; Gurlui, S.; Leontie, L.; Adnane, M. Optical and Structural Analysis of TiO2–SiO2 Nanocomposite Thin Films Fabricated via Pulsed Laser Deposition Technique. Nanomaterials 2023, 13, 1632. [Google Scholar] [CrossRef] [PubMed]
- Rousset, J.; Saucedo, E.; Lincot, D. Extrinsic Doping of Electrodeposited Zinc Oxide Films by Chlorine for Transparent Conductive Oxide Applications. Chem. Mater. 2009, 21, 534–540. [Google Scholar] [CrossRef]
- Villegas, E.A.; Ramajo, L.A.; Lere, M.E.; Castro, M.S.; Parra, R. UV-response of aluminum-doped zinc oxide transparent films with different microstructures and electrical properties. Mater. Sci. Semicond. Process. 2021, 121, 105412. [Google Scholar] [CrossRef]
- Ahn, S.E.; Lee, J.S.; Kim, H.; Kim, S.; Kang, B.H.; Kim, K.H.; Kim, G.T. Photoresponse of sol-gel-synthesized ZnO nanorods. Appl. Phys. Lett. 2004, 84, 5022–5024. [Google Scholar] [CrossRef]
- Law, J.B.K.; Thong, J.T.L. Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time. Appl. Phys. Lett. 2006, 88, 133114. [Google Scholar] [CrossRef]
- Hu, L.; Zhu, L.; He, H.; Guo, Y.; Pan, G.; Jiang, J.; Jin, Y.; Sun, L.; Ye, Z. Colloidal chemically fabricated ZnO:Cu-based photodetector with extended UV-visible detection waveband. Nanoscale 2013, 5, 9577–9581. [Google Scholar] [CrossRef]
- Shelke, V.; Sonawane, B.K.; Bhole, M.P.; Patil, D.S. Electrical and optical properties of transparent conducting tin doped ZnO thin films. J. Mater. Sci. Mater. Electron. 2012, 23, 451–456. [Google Scholar] [CrossRef]
- Kumar, M.; Bhatt, V.; Abhyankar, A.C.; Kim, J.; Kumar, A.; Yun, J.-H. Modulation of structural properties of Sn doped ZnO for UV photoconductors. Sens. Actuators A 2018, 270, 118–126. [Google Scholar] [CrossRef]
- Aslan, E.; Zarbali, M. Tuning of photosensitivity and optical parameters of ZnO based photodetectors by co-Sn and Ti doping. Opt. Mater. 2022, 125, 112030. [Google Scholar] [CrossRef]
- Pujar, S.M.; Bhat, S.; Rao, G.K.; Mahesha. Reduced Persistent Photoconductivity in Successive Ionic Layer Adsorption and Reaction-Deposited ZnO:Sn Thin Films. Phys. Status Solidi A 2024, 2400451. [Google Scholar] [CrossRef]
- Ning, Y.; Zhang, Z.; Teng, F.; Fang, X. Novel Transparent and Self-Powered UV Photodetector Based on Crossed ZnO Nanofiber Array Homojunction. Small 2018, 14, 1703754. [Google Scholar] [CrossRef] [PubMed]
TZO Composition | d (µm) | Tvis (%) | Eg (eV) | n (cm−3) | µ (cm2V−1s−1) | r (W.cm) | Ip/Id | t (s) | Reference |
---|---|---|---|---|---|---|---|---|---|
6% at. Sn-ZnO | 0.65 | 88 | 3.24 | N/A | N/A | 648 | N/A | N/A | [41] |
0.6% at. Sn-ZnO | 3.49 | 65 | 3.26 | 3.4 × 1019 | 9.22 | 8.3 × 10−2 | N/A | N/A | [24] |
7% at. Sn-ZnO | 0.35 | 85 | 3.25 | N/A | N/A | N/A | 1 × 105 | 3.5 | [42] |
1% at. Sn-ZnO | 0.3 | 80 | 3.25 | N/A | N/A | 410 | 37 | 19.4 | [43] |
7% at. Sn-ZnO | 1 | N/A | 3.23 | 1021 | 5–22 | N/A | 3105 | 60 | [44] |
7% at. Sn-ZnO | 0.16 | 80 | 3.26 | 3.9 × 1017 | 3 | 18 | 2 | 17 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdés, M.; Villegas, E.A.; Ramajo, L.A.; Parra, R. Ultraviolet-Sensor Based on Tin-Doped Zinc Oxide Thin Films Grown by Spray Pyrolysis. Ceramics 2024, 7, 1500-1512. https://doi.org/10.3390/ceramics7040097
Valdés M, Villegas EA, Ramajo LA, Parra R. Ultraviolet-Sensor Based on Tin-Doped Zinc Oxide Thin Films Grown by Spray Pyrolysis. Ceramics. 2024; 7(4):1500-1512. https://doi.org/10.3390/ceramics7040097
Chicago/Turabian StyleValdés, Matías, Edgar A. Villegas, Leandro A. Ramajo, and Rodrigo Parra. 2024. "Ultraviolet-Sensor Based on Tin-Doped Zinc Oxide Thin Films Grown by Spray Pyrolysis" Ceramics 7, no. 4: 1500-1512. https://doi.org/10.3390/ceramics7040097
APA StyleValdés, M., Villegas, E. A., Ramajo, L. A., & Parra, R. (2024). Ultraviolet-Sensor Based on Tin-Doped Zinc Oxide Thin Films Grown by Spray Pyrolysis. Ceramics, 7(4), 1500-1512. https://doi.org/10.3390/ceramics7040097