Bioactive-Glass-Incorporated Plasma Electrolytic Oxidation Coating on AZ31 Mg Alloy: Preparation and Characterization
Abstract
:1. Introduction
2. Materials and Method
2.1. Bioactive Glass Particle Synthesis and Characterization
2.2. Preparation of Mg Alloy Substrate and Bioactive-Glass-Particles-Incorporated PEO Coating
2.3. Coating Characterization
3. Results and Discussion
3.1. Characterization of Synthesized 58S BG Particles
3.2. Voltage–Time Response during PEO
3.3. Coating Morphology and Composition
3.4. Coating Adhesion and In Vitro Degradation Behavior
3.5. In Vitro Bioactivity Evaluation of Apatite Formation
4. Conclusions
- BG particles considerably affected the coating’s microstructure and properties. During the PEO treatment, the negative zeta potential of the BG suspension caused electrophoretic mobility of the BG particles towards the anodic (Mg) substrate.
- Most of the BG submicron particles were entrapped in the discharge channels and open pores. This resulted in the sealing of porosity and a more compact surface.
- The developed coatings exhibited an appropriate adhesion strength. The coating delamination or adhesive failure occurred at 22.5 N (critical load). This particular adhesion value can be considered reasonable for their potential orthopedic applications.
- Furthermore, the PDP analysis revealed that the PEO–BG coating effectively slowed down the degradation rate of Mg alloys; corrosion rate and icorr values were significantly reduced (up to 100 times) in the SBF environment. Similarly, EIS studies indicated that overall impedance |Z| BG coated samples are far superior to conventional PPEO samples.
- The presence of BG particles in the coated surface apparently enhanced the in vitro bioactivity; a prominent apatite layer with typical cauliflower-like morphology was produced on the surface after 7 and 14 days of immersion in SBF. More importantly, the formed layers had an appropriate Ca to P ratio.
- Overall, the coating produced at current density 50 mA·cm−2 and 465 VDC yielded the best results. In conclusion, the BG-incorporated PEO coatings on Mg alloys produced some promising outcomes and can be considered an attractive candidate for biomedical applications.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hornberger, H.; Virtanen, S.; Boccaccini, A. Biomedical coatings on magnesium alloys—A review. Acta Biomater. 2012, 8, 2442–2455. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; He, C.; E, D.; Yang, W.; Qi, F.; Xie, D.; Shen, L.; Peng, S.; Shuai, C. Mg bone implant: Features, developments and perspectives. Mater. Des. 2019, 185, 108259. [Google Scholar] [CrossRef]
- Narayanan, T.S.N.S.; Park, I.S.; Lee, M.H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Prog. Mater. Sci. 2014, 60, 1–71. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Siddiqui, M.A.; Kolawole, S.K.; Yang, Y.; Shen, Y.; Yang, J.; Wang, J.; Su, X. Enhancing Corrosion Resistance and Antibacterial Properties of ZK60 Magnesium Alloy Using Micro-Arc Oxidation Coating Containing Nano-Zinc Oxide. Acta Metall. Sin. (Engl. Lett.) 2024. [Google Scholar] [CrossRef]
- Yang, C.; Cui, S.; Fu, R.K.; Sheng, L.; Wen, M.; Xu, D.; Zhao, Y.; Zheng, Y.; Chu, P.K.; Wu, Z. Optimization of the in vitro biodegradability, cytocompatibility, and wear resistance of the AZ31B alloy by micro-arc oxidation coatings doped with zinc phosphate. J. Mater. Sci. Technol. 2024, 179, 224–239. [Google Scholar] [CrossRef]
- Yang, C.; Huang, J.; Cui, S.; Fu, R.; Sheng, L.; Xu, D.; Tian, X.; Zheng, Y.; Chu, P.K.; Wu, Z. NaF assisted preparation and the improved corrosion resistance of high content ZnO doped plasma electrolytic oxidation coating on AZ31B alloy. J. Magnes. Alloys 2023. [Google Scholar] [CrossRef]
- Galio, A.; Lamaka, S.; Zheludkevich, M.; Dick, L.; Müller, I.; Ferreira, M. Inhibitor-doped sol–gel coatings for corrosion protection of magnesium alloy AZ31. Surf. Coat. Technol. 2010, 204, 1479–1486. [Google Scholar] [CrossRef]
- Huo, H.; Li, Y.; Wang, F. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corros. Sci. 2003, 46, 1467–1477. [Google Scholar] [CrossRef]
- Lucas, R.R.; Marques, L.F.B.; Hein, L.R.d.O.; Botelho, E.C.; Mota, R.P. Experimental Design of the Adhesion between a PEI/Glass Fiber Composite and the AA1100 Aluminum Alloy with Oxide Coating Produced via Plasma Electrolytic Oxidation (PEO). Ceramics 2024, 7, 596–606. [Google Scholar] [CrossRef]
- Ropyak, L.; Shihab, T.; Velychkovych, A.; Bilinskyi, V.; Malinin, V.; Romaniv, M. Optimization of Plasma Electrolytic Oxidation Technological Parameters of Deformed Aluminum Alloy D16T in Flowing Electrolyte. Ceramics 2023, 6, 146–167. [Google Scholar] [CrossRef]
- Barati Darband, G.; Aliofkhazraei, M.; Hamghalam, P.; Valizade, N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. J. Magnes. Alloys 2017, 5, 74–132. [Google Scholar] [CrossRef]
- Asad, R.; Uzair, S.A.; Mirza, E.H.; Rizwan, M.; Alias, R.; Chandio, A.D.; Hussain, F. Development of ceramic layer on magnesium and its alloys for bone implant applications using plasma electrolytic oxidation (PEO). J. Aust. Ceram. Soc. 2024, 1–20. [Google Scholar] [CrossRef]
- Hussein, R.; Nie, X.; O Northwood, D.; Yerokhin, A.; Matthews, A. Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. J. Phys. D Appl. Phys. 2010, 43, 105203. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Guo, Z.; Yang, Z.; Qian, W.; Chen, Y.; Li, H.; Zhao, Q.; Xing, Y.; Zhao, Y. Improved corrosion resistance of ZrO2/MgO coating for magnesium alloys by manipulating the pore structure. J. Mater. Res. Technol. 2023, 24, 2403–2415. [Google Scholar] [CrossRef]
- Lv, G.-H.; Chen, H.; Gu, W.-C.; Li, L.; Niu, E.-W.; Zhang, X.-H.; Yang, S.-Z. Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology. J. Mater. Process. Technol. 2008, 208, 9–13. [Google Scholar] [CrossRef]
- Lu, X.; Mohedano, M.; Blawert, C.; Matykina, E.; Arrabal, R.; Kainer, K.U.; Zheludkevich, M.L. Plasma electrolytic oxidation coatings with particle additions—A review. Surf. Coat. Technol. 2016, 307, 1165–1182. [Google Scholar] [CrossRef]
- Fattah-Alhosseini, A.; Chaharmahali, R.; Babaei, K. Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review. J. Magnes. Alloys 2020, 8, 799–818. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, D.; Yu, J.; Di, S. Effects of Al2O3 nano-additive on performance of micro-arc oxidation coatings formed on AZ91D Mg alloy. J. Mater. Sci. Technol. 2014, 30, 984–990. [Google Scholar] [CrossRef]
- Liang, J.; Hu, L.; Hao, J. Preparation and characterization of oxide films containing crystalline TiO2 on magnesium alloy by plasma electrolytic oxidation. Electrochim. Acta 2007, 52, 4836–4840. [Google Scholar] [CrossRef]
- Lu, X.; Blawert, C.; Huang, Y.; Ovri, H.; Zheludkevich, M.L.; Kainer, K.U. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles. Electrochim. Acta 2016, 187, 20–33. [Google Scholar] [CrossRef]
- Liu, F.; Shan, D.-Y.; Song, Y.-W.; Han, E.-H. Formation process of composite plasma electrolytic oxidation coating containing zirconium oxides on AM50 magnesium alloy. Trans. Nonferrous Met. Soc. China 2011, 21, 943–948. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Uzair, M.; Lim, H.T.; Koo, B.H. Structural and electrochemical properties of the catalytic CeO2 nanoparticles-based PEO ceramic coatings on AZ91 Mg alloy. J. Alloys Compd. 2017, 726, 284–294. [Google Scholar] [CrossRef]
- Vatan, H.N.; Ebrahimi-Kahrizsangi, R.; Kasiri-Asgarani, M. Structural, tribological and electrochemical behavior of SiC nanocomposite oxide coatings fabricated by plasma electrolytic oxidation (PEO) on AZ31 magnesium alloy. J. Alloys Compd. 2016, 683, 241–255. [Google Scholar] [CrossRef]
- Mashtalyar, D.; Gnedenkov, S.; Sinebryukhov, S.; Imshinetskiy, I.; Puz’, A. Plasma electrolytic oxidation of the magnesium alloy MA8 in electrolytes containing TiN nanoparticles. J. Mater. Sci. Technol. 2017, 33, 461–468. [Google Scholar] [CrossRef]
- Lou, B.-S.; Lin, Y.-Y.; Tseng, C.-M.; Lu, Y.-C.; Duh, J.-G.; Lee, J.-W. Plasma electrolytic oxidation coatings on AZ31 magnesium alloys with Si3N4 nanoparticle additives. Surf. Coat. Technol. 2017, 332, 358–367. [Google Scholar] [CrossRef]
- Lou, B.-S.; Lee, J.-W.; Tseng, C.-M.; Lin, Y.-Y.; Yen, C.-A. Mechanical property and corrosion resistance evaluation of AZ31 magnesium alloys by plasma electrolytic oxidation treatment: Effect of MoS2 particle addition. Surf. Coat. Technol. 2018, 350, 813–822. [Google Scholar] [CrossRef]
- Gao, J.; Guan, S.; Chen, J.; Wang, L.; Zhu, S.; Hu, J.; Ren, Z. Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg–Zn–Ca alloy. Appl. Surf. Sci. 2011, 257, 2231–2237. [Google Scholar] [CrossRef]
- Hench, L.L. The story of Bioglass®. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef]
- Jones, J.R. Review of bioactive glass: From Hench to hybrids. Acta Biomater. 2013, 9, 4457–4486. [Google Scholar] [CrossRef]
- Rizwan, M.; Hamdi, M.; Basirun, W.J. Bioglass® 45S5-based composites for bone tissue engineering and functional applications. J. Biomed. Mater. Res. Part A 2017, 105, 3197–3223. [Google Scholar] [CrossRef]
- Vuong, B.X.; Thanh, N.T.M. Synthesis and Characterization of a Highly Ordered Mesoporous Bio-glass. VNU J. Sci. Nat. Sci. Technol. 2020, 36, 57–63. [Google Scholar] [CrossRef]
- Panah, N.G.; Atkin, R.; Sercombe, T.B. Effect of low temperature crystallization on 58S bioactive glass sintering and compressive strength. Ceram. Int. 2021, 47, 30349–30357. [Google Scholar] [CrossRef]
- Oliveira, I.; Barbosa, A.; Santos, K.; Lança, M.; Lima, M.; Vieira, T.; Silva, J.; Borges, J. Properties of strontium-containing BG 58S produced by alkali-mediated sol-gel process. Ceram. Int. 2022, 48, 11456–11465. [Google Scholar] [CrossRef]
- ASTM C1624-05(2015)(Test Method): Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing. Available online: https://standards.iteh.ai/catalog/standards/sist/12314489-ba3b-49eb-a6f6-00ff9fd11c2a/astm-c1624-052015 (accessed on 27 August 2024).
- Sergici, A.O.; Randall, N.X. Scratch testing of coatings. Adv. Mater. Process. 2006, 164, 41–43. [Google Scholar]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, L.; Chen, X.; Liao, T.; Zheng, J. Preparation and characterization of bioactive glass tablets and evaluation of bioactivity and cytotoxicity in vitro. Bioact. Mater. 2017, 3, 315–321. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Chen, Q.; Lefebvre, L.; Gremillard, L.; Chevalier, J. Sintering, crystallisation and biodegradation behaviour of Bioglass®-derived glass–ceramics. Faraday Discuss. 2007, 136, 27–44. [Google Scholar] [CrossRef]
- Huang, K.; Cai, S.; Xu, G.; Ren, M.; Wang, X.; Zhang, R.; Niu, S.; Zhao, H. Sol–gel derived mesoporous 58S bioactive glass coatings on AZ31 magnesium alloy and in vitro degradation behavior. Surf. Coat. Technol. 2014, 240, 137–144. [Google Scholar] [CrossRef]
- Asgari, M.; Aliofkhazraei, M.; Darband, G.B.; Rouhaghdam, A.S. How nanoparticles and submicron particles adsorb inside coating during plasma electrolytic oxidation of magnesium? Surf. Coat. Technol. 2020, 383, 125252. [Google Scholar] [CrossRef]
- Doostmohammadi, A.; Monshi, A.; Salehi, R.; Fathi, M.H.; Golniya, Z.; Daniels, A.U. Bioactive glass nanoparticles with negative zeta potential. Ceram. Int. 2011, 37, 2311–2316. [Google Scholar] [CrossRef]
- Khanmohammadi, S.; Ojaghi-Ilkhchi, M.; Farrokhi-Rad, M. Evaluation of bioglass and hydroxyapatite based nanocomposite coatings obtained by electrophoretic deposition. Ceram. Int. 2020, 46, 26069–26077. [Google Scholar] [CrossRef]
- Sikdar, S.; Menezes, P.V.; Maccione, R.; Jacob, T.; Menezes, P.L. Plasma electrolytic oxidation (Peo) process—Processing, properties, and applications. Nanomaterials 2021, 11, 1375. [Google Scholar] [CrossRef] [PubMed]
- Hussein, R.O.; Northwood, D.O.; Nie, X. Processing-Microstructure Relationships in the Plasma Electrolytic Oxidation (PEO) Coating of a Magnesium Alloy. Mater. Sci. Appl. 2014, 5, 124–139. [Google Scholar] [CrossRef]
- Toulabifard, A.; Rahmati, M.; Raeissi, K.; Hakimizad, A.; Santamaria, M. The effect of electrolytic solution composition on the structure, corrosion, and wear resistance of PEO coatings on AZ31 magnesium alloy. Coatings 2020, 10, 937. [Google Scholar] [CrossRef]
- Chen, Z.; Ji, H.; Geng, X.; Chen, X.; Yong, X.; Zhang, S. 3-D distribution characteristics of the micro-defects in the PEO coating on ZM6 mg-alloy during corrosion. Corros. Sci. 2020, 174, 108821. [Google Scholar] [CrossRef]
- Farag, M.M.; Ahmed, H.Y.; Al-Rashidy, Z.M. Improving the Corrosion Resistance of Magnesium Alloy by Magnesium Phosphate/Glass Composite Coatings Using Sol–Gel Method. Silicon 2022, 15, 3841–3854. [Google Scholar] [CrossRef]
- Implants for Surgery-Hydroxyapatite-Part 4: Determination of Coating Adhesion Strength Implants Chirurgicaux-Hydroxyapatite-Partie 4: Détermination de la Résistance à L’adhésion du Revêtement Copyright Protected Document. 2018. Available online: www.iso.org (accessed on 27 August 2024).
- Rehman, M.A.U.; Ferraris, S.; Goldmann, W.H.; Perero, S.; Bastan, F.E.; Nawaz, Q.; di Confiengo, G.G.; Ferraris, M.; Boccaccini, A.R. Antibacterial and Bioactive Coatings Based on Radio Frequency Co-Sputtering of Silver Nanocluster-Silica Coatings on PEEK/Bioactive Glass Layers Obtained by Electrophoretic Deposition. ACS Appl. Mater. Interfaces 2017, 9, 32489–32497. [Google Scholar] [CrossRef]
- Yadav, V.; Sankar, M.; Pandey, L. Coating of bioactive glass on magnesium alloys to improve its degradation behavior: Interfacial aspects. J. Magnes. Alloys 2020, 8, 999–1015. [Google Scholar] [CrossRef]
- Song, D.; Hao, J.; Yang, F.; Chen, H.; Liang, N.; Wu, Y.; Zhang, J.; Ma, H.; Klu, E.E.; Gao, B.; et al. Corrosion behavior and mechanism of Cr–Mo alloyed steel: Role of ferrite/bainite duplex microstructure. J. Alloys Compd. 2019, 809, 151787. [Google Scholar] [CrossRef]
- Sorour, A.A.; Farooq, M.; Mekki, A.; Kumar, A.M. Corrosion of a Spark Plasma Sintered Fe-Cr-Mo-B-C Alloy in Hydrochloric Acid. Met. Microstruct. Anal. 2021, 10, 291–301. [Google Scholar] [CrossRef]
- Hsu, C.H.; Mansfeld, F. Concerning the Conversion of the Constant Phase Element Parameter Yo into a Capacitance. Corrosion 2001, 57, 747–748. [Google Scholar] [CrossRef]
- Rezwan, K.; Chen, Q.Z.; Blaker, J.J.; Boccaccini, A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3413–3431. [Google Scholar] [CrossRef] [PubMed]
- Chaharmahali, R.; Fattah-Alhosseini, A.; Esfahani, H. Plasma electrolyte oxidation of hydroxyapatite-containing coating on AZ31B Mg alloy: Effects of current density and duty cycle. J. Ultrafine Grained Nanostruct. Mater. 2021, 54, 149–162. [Google Scholar] [CrossRef]
- Rizwan, M.; Hamdi, M.; Basirun, W.; Kondoh, K.; Umeda, J. Low pressure spark plasma sintered hydroxyapatite and Bioglass® composite scaffolds for bone tissue repair. Ceram. Int. 2018, 44, 23052–23062. [Google Scholar] [CrossRef]
- Ansar, E.; Ravikumar, K.; Babu, S.S.; Fernandez, F.; Komath, M.; Basu, B.; Varma, P.H. Inducing apatite pre-layer on titanium surface through hydrothermal processing for osseointegration. Mater. Sci. Eng. C 2019, 105, 110019. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Bioceramics of calcium orthophosphates. Biomaterials 2010, 31, 1465–1485. [Google Scholar] [CrossRef]
TEOS (g) | TEP (g) | Calcium Nitrate (g) | 2 M HNO3 (mL) | Ethanol (mL) | 1 M Ammonia Solution (mL) | H2O (mL) |
---|---|---|---|---|---|---|
20 | 2 | 14 | 2.8 | 50 | 10 | 14 |
Electrolytes | NaOH (M) | Na2HPO4 (M) | 58S BG (g/L) | pH | Conductivity (mS/cm) | Zeta Potential (mV) |
---|---|---|---|---|---|---|
Without particle | 0.05 | 0.025 | - | 12.1 | 8.2 | - |
With particle | 0.05 | 0.025 | 5 | 12.0 | 8.0 | (−20.2) |
Oxides | Molar Percentage |
---|---|
SiO2 | 60.62 |
CaO | 35.81 |
P2O5 | 3.57 |
Sample | Critical Load (N) |
---|---|
PPEO | 12.75 |
PEO–BG-50 | 22.5 |
PEO–BG-100 | 10.5 |
Sample | Ecorr (V) | icorr (A·cm−2) | Corrosion Rate (mm/year) |
---|---|---|---|
Mg AZ31 | −1.551 | 3.792 × 10−4 | 8.354 |
PPEO | −1.521 | 4.030 × 10−6 | 0.088 |
PEO–BG-50 | −1.425 | 1.794 × 10−6 | 0.039 |
PEO–BG-100 | −1.512 | 6.177 × 10−6 | 0.136 |
Samples | RS (Ω·cm2) | Ro (Ω·cm2) | Ceffo (µF·cm2) | Ri (Ω·cm2) | Ceffi (µF·cm2) | Rp (Ω·cm2) | Cdl (µF·cm2) | Chi Squared |
---|---|---|---|---|---|---|---|---|
Mg AZ31 | 39.27 | - | - | 178.90 | 12.51 | 67.6 | 186.66 | 0.002 |
PPEO | 38.20 | 4.430 × 103 | 1.073 | 1.182 × 104 | 1.08 | 551.8 | 27.73 | 0.005 |
PEO–BG-50 | 39.47 | 8.539 × 103 | 0.631 | 1.342 × 104 | 12.13 | 800.1 | 15.08 | 0.004 |
PEO–BG-100 | 35.51 | 2.676 × 103 | 0.588 | 0.527 × 104 | 6.48 | 964.1 | 14.37 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzair, S.A.; Hussain, F.; Rizwan, M. Bioactive-Glass-Incorporated Plasma Electrolytic Oxidation Coating on AZ31 Mg Alloy: Preparation and Characterization. Ceramics 2024, 7, 1459-1476. https://doi.org/10.3390/ceramics7040094
Uzair SA, Hussain F, Rizwan M. Bioactive-Glass-Incorporated Plasma Electrolytic Oxidation Coating on AZ31 Mg Alloy: Preparation and Characterization. Ceramics. 2024; 7(4):1459-1476. https://doi.org/10.3390/ceramics7040094
Chicago/Turabian StyleUzair, Syed Ahmed, Fayaz Hussain, and Muhammad Rizwan. 2024. "Bioactive-Glass-Incorporated Plasma Electrolytic Oxidation Coating on AZ31 Mg Alloy: Preparation and Characterization" Ceramics 7, no. 4: 1459-1476. https://doi.org/10.3390/ceramics7040094
APA StyleUzair, S. A., Hussain, F., & Rizwan, M. (2024). Bioactive-Glass-Incorporated Plasma Electrolytic Oxidation Coating on AZ31 Mg Alloy: Preparation and Characterization. Ceramics, 7(4), 1459-1476. https://doi.org/10.3390/ceramics7040094