Franklinite-Zincochromite-Gahnite Solid Solutions for Cool Red Ceramic Pigments with Visible Light Photocatalysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Samples Characterisation
2.3. Application of Pigments
3. Results and Discussion
3.1. Franklinite-Zincochromite Zn(Fe2−xCrx)O4 Solid Solutions
3.2. Gahnite-Zincochromite Zn(Al2−xCrx)O4 Solid Solutions
3.3. Gahnite-Zincochromite-Franklinite Zn(Al1.5−xCr0.5Fex)O4 Solid Solutions
3.4. Summary of Optimised Samples Compared with a Reference
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sickafus, K.E.; Wills, J.M.; Grimes, N.W. Structure of Spinel. J. Am. Ceram. Soc. 1999, 82, 3279–3292. [Google Scholar] [CrossRef]
- Burdett, J.K.; Price, G.L.; Price, S.L. Role of the crystal-field theory in determining the structures of spinels. J. Am. Chem. Soc. 1982, 104, 92–95. [Google Scholar] [CrossRef]
- O’Neil, H.S.T.; Navrotsky, A. Simple spinels: Crystallographic parameters, cation radii, lattice energies, and cation distribution. Am. Mineral. 1983, 68, 181–194. [Google Scholar]
- Bohra, M.; Prasad, S.; Kumar, N.; Misra, D.S.; Sahoo, S.C.; Venkataramani, N.; Krishnan, R. Large room temperature magnetization in nanocrystalline zinc ferrite thin films. Appl. Phys. Lett. 2006, 488, 262506. [Google Scholar] [CrossRef]
- Tanaka, K.; Katsuta, M.; Nakashima, S.; Fujita, K.J. Hydrothermal Synthesis and Magnetic Properties of Zinc Ferrite Nanocrystals. Jpn. Soc. Powder Powder Metall. 2004, 52, 221–227. [Google Scholar] [CrossRef]
- Monrós, G.; Badenes, J.A.; Llusar, M. Ecofriendly High NIR Reflectance Ceramic Pigments Based on Rare Earths Compared with Classical Chromophores Prepared by DPC Method. Ceramics 2022, 5, 614–641. [Google Scholar] [CrossRef]
- Ayana, Y.M.A.; El-Sawy, S.M.; Salah, S.H. Zinc-ferrite pigment for corrosion protection. Anti-Corros. Methods Mater. 1997, 44, 381–388. [Google Scholar] [CrossRef]
- Calbo, J.; Sorlí, S.; Llusar, M.; Tena, M.A.; Monrós, G. Minimisation of toxicity in nickel ferrite black pigment. Br. Ceram. Trans. 2004, 103, 3–9. [Google Scholar] [CrossRef]
- Schwarz, M.; Veverka, M.; Michalková, E.; Lalík, V.; Veverková, D. Utilisation of industrial waste for ferrite pigments production. Chem. Pap. 2012, 66, 248–258. [Google Scholar] [CrossRef]
- Lahmer, M.A. The effect of degree of inversion on the electronic and optical properties of ZnAl2O4: A first-principles study. Comput. Condens. Matter 2023, 37, e00857. [Google Scholar] [CrossRef]
- Granone, L.I.; Dillert, R.; Heitjans, P.; Bahnemann, D.W. Effect of the degree of inversion on the electrical conductivity of spinel ZnFe2O4. ChemistrySelect 2019, 4, 1232–1239. [Google Scholar] [CrossRef]
- Quintero, J.J.M.; Rodríguez, K.L.S.; Torres, C.E.R.; Errico, L.A. Ab initio study of the role of defects on the magnetic response and the structural, electronic and hyperfine properties of ZnFe2O4. J. Alloy Compd. 2019, 775, 1117. [Google Scholar] [CrossRef]
- Peng, C.; Gao, L. Optical and Photocatalytic Properties of Spinel ZnCr2O4 Nanoparticles Synthesized by a Hydrothermal Route. J. Am. Ceram. Soc. 2008, 9, 2388–2390. [Google Scholar] [CrossRef]
- Mousavi, Z.; Soofivand, F.; Mahdiyeh Esmaeili-Zare, M.; Salavati-Niasari, M.; Bagheri, S. ZnCr2O4 Nanoparticles: Facile Synthesis, Characterization and Photocatalytic Properties. Sci. Rep. 2016, 6, 20071. [Google Scholar] [CrossRef] [PubMed]
- Bendiganavale, A.K.; Malshe, V.C. Infrared Reflective Inorganic Pigments. Recent Pat. Chem. Eng. 2008, 1, 67–79. [Google Scholar]
- Kortüm, G. Reflectance Spectroscopy, Principles, Methods, Applications; Springer: Berlin/Heidelberg, Germany, 1969; ISBN 978-3-642-88071. [Google Scholar]
- Monrós, G. Scheelite and Zircon: Brightness, Color and NIR Reflectance in Ceramics; Nova Science Publishers: New York, NY, USA, 2021; ISBN 978-1-53619-332-9. [Google Scholar]
- May-Lozano, M.; Mendoza-Escamilla, V.; Rojas-García, E.; López-Medina, V.; Rivadeneyra-Romero, G.; Martinez-Delgadillo, S.A. Sonophotocatalytic degradation of Orange II dye using low cost photocatalyst. J. Clean. Prod. 2017, 148, 836–844. [Google Scholar] [CrossRef]
- Casbeer, E.; Sharma, V.K.; Li, X. Synthesis and photocatalytic activity of ferrites under visible light: A review. Sep. Purif. Technol. 2012, 87, 1–14. [Google Scholar] [CrossRef]
- CIE Comission International de l’Eclairage. Recommendations on Uniform Color Spaces, Colour Difference Equations, Psychometrics Colour Terms; Bureau Central de la CIE: Paris, France, 1978; Available online: https://cie.co.at/ (accessed on 14 September 2022).
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi 1996, 15, 627–637. [Google Scholar] [CrossRef]
- Standard G173-03; Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM International: West Conshohocken, PA, USA, 2013.
- Liu, J.J.; Fu, X.L.; Chen, S.F.; Zhu, Y.F. Electronic structure and optical properties of Ag3PO4 photocatalyst calculated by hybrid density functional method. Appl. Phys. Lett. 2011, 99, 191903. [Google Scholar] [CrossRef]
- Kumar, K.V.; Porkodi, K.; Rocha, F. Langmuir–Hinshelwood kinetics—A theoretical study. Catal. Commun. 2008, 9, 82–84. [Google Scholar] [CrossRef]
- Verger, L.; Olivier, D.; Rousse, G.; Cotte, M.; Cormier, L. The Stability of Gahnite Doped with Chromium Pigments in Glazes from the French Manufacture of Sèvres. J. Am. Ceram. Soc. 2016, 100, 86–95. [Google Scholar] [CrossRef]
- Zen, E. Validity of Vegard’s law. Am. Mineral. 1956, 41, 523–524. [Google Scholar]
- Lambies, L.V.; Rincon, L.J.M. Mechanism of formation of a zircon-cadmium sulfoselenide pigment. Trans. J. Br. Ceram. Soc. 1981, 80, 105–108. [Google Scholar]
- Zhu, K.; Wang, J.; Wang, Y.; Jina, C.; Ganeshrajaa, A.S. Visible-light-induced photocatalysis and peroxymonosulfate activation over ZnFe2O4 fine nanoparticles for degradation of Orange II. Catal. Sci. Technol. 2016, 6, 2296–2304. [Google Scholar] [CrossRef]
- Kumbhar, S.S.; Mahadik, M.A.; Shinde, S.S.; Rajpure, K.Y.; Bhosale, C.H. Fabrication of ZnFe2O4 films and its application in photoelectrocatalytic degradation of salicylic acid. J. Photochem. Photobiol. B Biol. 2015, 142, 118–123. [Google Scholar] [CrossRef]
OXIDE | (a) Double Firing with Pb, 1000 °C | (b) Single Firing, 1080 °C | (c) Single Firing Porcelain, 1200 °C |
---|---|---|---|
SiO2 | 75 | 65 | 67 |
Na2O | 5 | 2 | - |
K2O | 2 | 4 | 3 |
CaO | 2 | 11 | 12.5 |
MgO | - | 2 | 1.5 |
ZnO | - | 7.5 | 6.5 |
Al2O3 | 10 | 8.5 | 9 |
PbO | 6 | - | - |
x | L*a*b* | RVis/RNIR/R (%) |
---|---|---|
Powder | ||
0 | 46.6/25.3/34.8 | 22/54/36 |
0.2 | 44.6/20.4/22.6 | 18/52/33 |
0.5 | 42.5/20.1/22.5 | 16/50/31 |
1.0 | 42.9/18.3/19.8 | 15/47/29 |
1.5 | 47.5/16.6/19.3 | 17/47/30 |
1.8 | 45.9/15.3/23.1 | 19/41/29 |
2.0 | 53.6/0.4/10.9 | 21/32/26 |
Glazed 1080 °C | ||
0 | 64.1/5.3/25.4 | 33/48/39 |
0.2 | 37.5/23.4/28.9 | 15/44/28 |
0.5 | 37.9/20.4/18.6 | 15/48/29 |
1.0 | 36.9/18.1/14.9 | 14/49/29 |
1.5 | 34.9/19.8/21.4 | 13/47/28 |
1.8 | 39.2/16.7/19.0 | 15/37/25 |
2.0 | 50.7/−2.0/8.0 | 25/29/27 |
Glazed 1200 °C | ||
0 | 38.5/6.4/4.3 | |
0.2 | 48/8.9/15.2 | |
0.5 | - | |
1.0 | - | |
1.5 | 46.2/6.2/8.1 | |
1.8 | - | |
2.0 | 32.5/2.1/6.4 |
x | L*a*b* | RVis/RNIR/R (%) |
---|---|---|
Gels | ||
0.02 | 68.2/1.3/2.2 | |
0.05 | 65.3/0.0/4.3 | |
0.1 | 60.5/−1.4/6.4 | |
0.2 | 54.1/−1.2/7.3 | |
0.3 | 48.1/−2.2/6.3 | |
0.4 | 44.2/−2.3/7.1 | |
0.5 | 40.2/−3.2/2.3 | |
0.75 | 31.1/−3.2/−1.2 | |
Powder | ||
0.02 | 72.1/1/.2/2.1 | 36/45/41 |
0.05 | 70.4/3.2/3.1 | 25/45/35 |
0.1 | 63.4/6.2/4.2 | 22/45/33 |
0.2 | 57.3/8.2/5.3 | 20/44/32 |
0.3 | 51.2/8.3/4.3 | 19/43/31 |
0.4 | 47.1/9.2/4.2 | 20/43/31 |
0.5 | 45.2/11.2/3.2 | 21/45/32 |
0.75 | 36.4/2.1/2.0 | 18/42/28 |
Glazed 1000 °C | ||
0.02 | 80.2/5.1/16.2 | 72/46/59 |
0.05 | 80.0/7.1/17.0 | 66/46/56 |
0.1 | 72.5/10.3/20.0 | 44/49/47 |
0.2 | 66.0/13.4/21.1 | 36/51/42 |
0.3 | 61.4/15.2/20.3 | 24/50/37 |
0.4 | 56.1/14.2/16.4 | 21/52/36 |
0.5 | 54.2/14.3/16.1 | 20/54/37 |
0.75 | 44.3/5.2/13.0 | 17/43/29 |
x | L*a*b* | RVis/RNIR/R (%) |
---|---|---|
Gels | ||
0 | 54.2/−1.1/7.0 | |
0.05 | 52.3/2.2/5.4 | |
0.1 | 44.3/5.1/9.0 | |
0.2 | 44.2/5.2/8.3 | |
0.3 | 42.3/6.4/8.0 | |
Powder | ||
0 | 57.0/8.1/5.2 | 21/45/33 |
0.05 | 52.1/10.0/12.1 | 22/46/34 |
0.1 | 53.2/12.2/17.2 | 20/50/37 |
0.2 | 50.2/11.1/17.2 | 19/51/34 |
0.3 | 49.2/12.1/18.2 | 19/50/33 |
Glazed 1080 °C | ||
0 | 60.2/15.3/11.2 | 20/54/37 |
0.05 | 55.2/17.2/18.1 | 20/58/39 |
0.1 | 56.3/21.2/25.0 | 22/58/40 |
0.2 | 51.2/23.2/25.1 | 17/59/38 |
0.3 | 51.2/21.2/24.3 | 19/58/38 |
Glazed 1200 °C | ||
0 | 69.1/13.0/9.2 | |
0.05 | 66.1/14.2/17.0 | |
0.1 | 66.4/16.0/22.2 | |
0.2 | 61.5/18.3/27.2 | |
0.3 | 57.5/15.2/24.3 |
L*a*b* | RVis/RNIR/R (%) | |
---|---|---|
Powder | ||
Zn(Fe1.8Cr0.2)O4 | 36.2/22.1/21.0 | 14/48/30 |
Zn(Al1.5Cr0.5)O4 | 51.3/12.5/8.2 | 21/45/32 |
Zn(Al1.3Cr0.5Fe0.2)O4 | 47.0/17.1/19.2 | 19/51/34 |
Reference (S0.5Se0.5)Cd@ZrSiO4 | 53.2/23.1/12.2 | 21/58/39 |
Glazed 1080 °C | ||
Zn(Fe1.8Cr0.2)O4 | 38.3/23.2/29.3 | 18/56/36 |
Zn(Al1.5Cr0.5)O4 | 60.2/15.0/11.0 | 20/54/37 |
Zn(Al1.3Cr0.5Fe0.2)O4 | 51.5/23.4/25.3 | 17/59/38 |
Reference (S0.5Se0.5)Cd@ZrSiO4 | 62.2/33.4/16.2 | 26/64/45 |
Glazed 1200 °C | ||
Zn(Fe1.8Cr0.2)O4 | 48.0/8.9/15.2 | 15/43/29 |
Zn(Al1.5Cr0.5)O4 | 69.3/13.2/9.1 | 26/57/42 |
Zn(Al1.3Cr0.5Fe0.2)O4 | 61.0/18.2/27.3 | 20/62/41 |
Reference (S0.5Se0.5)Cd@ZrSiO4 | colourless | - |
Eg (eV) | t1/2 (min) | R2 | |
---|---|---|---|
Zn(Fe1.8Cr0.2) | 2.10 | 213 | 0.8341 |
Zn(Al1.5Cr0.5) | 1.98 | 346 | 0.9679 |
Zn(Al1.3Cr0.5Fe0.2)O4 | 2.00 | 433 | 0.8177 |
((S0.5Se0.5)Cd@ZrSiO4 | 1.77 | 267 | 0.9870 |
Ag3PO4 | 2.45 | 230 | 0.9976 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monrós, G.; Badenes, J.A.; Llusar, M.; Delgado, C. Franklinite-Zincochromite-Gahnite Solid Solutions for Cool Red Ceramic Pigments with Visible Light Photocatalysis. Ceramics 2024, 7, 342-363. https://doi.org/10.3390/ceramics7010022
Monrós G, Badenes JA, Llusar M, Delgado C. Franklinite-Zincochromite-Gahnite Solid Solutions for Cool Red Ceramic Pigments with Visible Light Photocatalysis. Ceramics. 2024; 7(1):342-363. https://doi.org/10.3390/ceramics7010022
Chicago/Turabian StyleMonrós, Guillermo, José A. Badenes, Mario Llusar, and Carolina Delgado. 2024. "Franklinite-Zincochromite-Gahnite Solid Solutions for Cool Red Ceramic Pigments with Visible Light Photocatalysis" Ceramics 7, no. 1: 342-363. https://doi.org/10.3390/ceramics7010022
APA StyleMonrós, G., Badenes, J. A., Llusar, M., & Delgado, C. (2024). Franklinite-Zincochromite-Gahnite Solid Solutions for Cool Red Ceramic Pigments with Visible Light Photocatalysis. Ceramics, 7(1), 342-363. https://doi.org/10.3390/ceramics7010022