Analysis of the Luminescent Emission during Flash Sintering of 8YSZ and 20SDC Ceramics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. X-ray Diffraction
2.3. Scanning Electron Microscopy
2.4. Electrochemical Impedance Spectroscopy
2.5. Luminescence
3. Results and Discussion
3.1. X-ray Diffraction
3.2. Scanning Electron Microscopy
3.3. Electrochemical Impedance Spectroscopy
3.4. Luminescence
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, M.; Grasso, S.; Mckinnon, R.; Saunders, T.; Reece, M.J. Review of flash sintering: Materials, mechanisms and modelling. Adv. Appl. Ceram. 2016, 116, 24–60. [Google Scholar] [CrossRef]
- Dancer, C.E.J. Flash sintering of ceramic materials. Res. Express 2016, 3, 102001. [Google Scholar] [CrossRef]
- Cologna, M.; Rashkova, B.; Raj, R. Flash sintering of nanograin zirconia in <5 s at 850 °C. J. Am. Ceram. Soc. 2010, 93, 3556–3559. [Google Scholar]
- Cologna, M.; Raj, R. Surface diffusion-controlled neck growth kinetics in early stage sintering of zirconia, with and without applied DC electrical field. J. Am. Ceram. Soc. 2011, 94, 391–395. [Google Scholar] [CrossRef]
- Obare, J.; Griffin, W.D.; Conrad, H. Effects of heating rate and DC electric field during sintering on the grain size distribution in fully sintered tetragonal zirconia polycrystals stabilized with 3% molar yttria (3Y-TZP). J. Mater. Sci. 2012, 47, 5141–5147. [Google Scholar] [CrossRef]
- Ji, W.; Parker, B.; Falco, S.; Zhang, J.Y.; Fu, Z.Y.; Todd, R.I. Ultra-fast firing: Effect of heating rate on sintering of 3YSZ, with and without an electric field. J. Eur. Ceram. Soc. 2017, 37, 2547–2551. [Google Scholar] [CrossRef]
- Conrad, H. Space charge and grain boundary energy in zirconia (3Y-TZP). J. Am. Ceram. Soc. 2011, 94, 3641–3642. [Google Scholar] [CrossRef]
- Carvalho, S.G.; Muccillo, E.N.; Muccillo, R. Electrical behavior and microstructural features of electric field-assisted and conventionally sintered 3 mol% yttria-stabilized zirconia. Ceramics 2018, 1, 3–12. [Google Scholar] [CrossRef]
- Downs, J.A.; Sglavo, V.M. Electric field assisted sintering of cubic zirconia at 390 °C. J. Am. Ceram. Soc. 2013, 96, 1342–1344. [Google Scholar] [CrossRef]
- Steil, M.C.; Marinha, D.; Aman, Y.; Gomes, J.R.; Kleitz, M. From conventional ac flash-sintering of YSZ to hyper-flash and double flash. J. Eur. Ceram. Soc. 2012, 33, 2093–2101. [Google Scholar] [CrossRef]
- Muccillo, R.; Muccillo, E. Shrinkage control of yttria-stabilized zirconia during ac electric field-assisted sintering. J. Eur. Ceram. Soc. 2014, 34, 3871–3877. [Google Scholar] [CrossRef]
- Hao, X.; Liu, Y.; Wang, Z.; Qiao, J.; Sun, K. A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current. J. Power Sources 2012, 210, 86–91. [Google Scholar] [CrossRef]
- Valdebenito, J.U.; Akbari-Fakhrabadi, A.; Viswanathan, M.R. Effect of flash sintering on microstructure of Ce0.9Gd0.1O1.95 electrolyte fabricated by tape-casting. Mater. Lett. 2017, 209, 291–294. [Google Scholar] [CrossRef]
- Biesuz, M.; Dell’Agli, G.; Spiridigliozzi, L.; Ferone, C.; Sglavo, V. Conventional and field-assisted sintering of nanosized Gd-doped ceria synthesized by co-precipitation. Ceram. Int. 2016, 42, 11766–11771. [Google Scholar] [CrossRef]
- Spiridigliozzi, L.; Biesuz, M.; Dell’agli, G.; Di Bartolomeo, E.; Zurlo, F.; Sglavo, V.M. Microstructural and electrical investigation of flash-sintered Gd/Sm-doped ceria. J. Mater. Sci. 2017, 52, 7479–7488. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, Z.; Zhang, J.; Hao, X.; Rooney, D.; Liu, Y.; Sun, W.; Qiao, J.; Sun, K.; Jia, T. Understanding the flash sintering of rare-earth-doped ceria for solid oxide fuel cell. J. Am. Ceram. Soc. 2015, 98, 1717–1723. [Google Scholar] [CrossRef]
- Li, J.; Guan, L.; Zhang, W.; Luo, M.; Song, J.; Song, X.; An, S. Sintering behavior of samarium doped ceria under DC electrical field. Ceram. Int. 2018, 44, 2470–2477. [Google Scholar] [CrossRef]
- Muccillo, R.; Muccillo, E.N.S.; Kleitz, M. Densification and enhancement of the grain boundary conductivity of gadolinium-doped barium cerate by ultra fast flash grain welding. J. Eur. Ceram. Soc. 2012, 32, 2311–2316. [Google Scholar] [CrossRef]
- Muccillo, R.; Esposito, V.; de Florio, D.; Muccillo, E. Electric field-assisted pressureless sintering gadolinium-, yttrium- and samarium-doped barium cerate. Scr. Mater. 2018, 156, 6–9. [Google Scholar] [CrossRef]
- M’peko, J.-C.; Francis, J.S.; Raj, R. Field-assisted sintering of undoped BaTiO3: Microstructure evolution and dielectric permittivity. J. Eur. Ceram. Soc. 2014, 34, 3655–3660. [Google Scholar] [CrossRef]
- Uehashi, A.; Yoshida, H.; Tokunaga, T.; Sasaki, K.; Yamamoto, T. Enhancement of sintering rates in BaTiO3 by controlling of DC electric current. J. Ceram. Soc. Jpn. 2015, 123, 465–468. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Yoshida, H.; Uehashi, A.; Tokunaga, T.; Sasaki, K.; Yamamoto, T. Electric current-controlled synthesis of BaTiO3. J. Am. Ceram. Soc. 2017, 100, 3843–3850. [Google Scholar] [CrossRef]
- Perez-Maqueda, L.A.; Gil-Gonzalez, E.; Perejon, A.; Lebrun, J.-M.; Sanchez-Jimenez, P.E.; Raj, R. Flash sintering of highly insulating nanostructured phase-pure BiFeO3. J. Am. Ceram. Soc. 2017, 100, 3365–3369. [Google Scholar] [CrossRef]
- Jesus, L.M.; Silva, R.S.; Raj, R.; M’peko, J.-C. Electric field-assisted flash sintering of CaCu3Ti4O12: Microstructure characteristics and dielectric properties. J. Alloys Compd. 2016, 682, 753–758. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, J. Promoting the flash sintering of ZnO in reduced atmospheres to achieve nearly full densities at furnace temperatures of <120 °C. Scr. Mater. 2015, 106, 26–29. [Google Scholar]
- Zhang, Y.; Jung, J.-I.; Luo, J. Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO–Bi2O3 under direct currents. Acta Mater. 2015, 94, 87–100. [Google Scholar] [CrossRef]
- Gao, H.; Asel, T.J.; Cox, J.W.; Zhang, Y.; Luo, J.; Brillson, L.J. Native point defect formation in flash sintered ZnO studied by depth-resolved cathodoluminescence spectroscopy. J. Appl. Phys. 2016, 120, 105302. [Google Scholar] [CrossRef]
- Muccillo, E.; Muccillo, R. Electric field-assisted sintering of tin dioxide with manganese dioxide addition. J. Eur. Ceram. Soc. 2014, 34, 3699–3706. [Google Scholar] [CrossRef]
- Muccillo, R.; Muccillo, E. Electric field-assisted flash sintering of tin dioxide. J. Eur. Ceram. Soc. 2014, 34, 915–923. [Google Scholar] [CrossRef]
- Gonzalez-Julian, J.; Guillon, O. Effect of electric field/current on liquid phase sintering. J. Am. Ceram. Soc. 2015, 98, 2018–2027. [Google Scholar] [CrossRef]
- Biesuz, M.; Sglavo, V.M. Current-induced abnormal and oriented grain growth in corundum upon flash sintering. Scr. Mater. 2018, 150, 82–86. [Google Scholar] [CrossRef]
- Straka, W.; Amoah, S.; Schwartz, J. Densification of thoria through flash sintering. MRS Commun. 2017, 7, 677–682. [Google Scholar] [CrossRef]
- Raftery, A.M.; da Silva, J.G.P.; Byler, D.D.; Andersson, D.A.; Uberuaga, B.P.; Stanek, C.R.; McClellan, K.J. Onset conditions for flash sintering of UO2. J. Nucl. Mater. 2017, 493, 264–270. [Google Scholar] [CrossRef]
- Valdez, J.; Byler, D.; Kardoulaki, E.; Francis, J.; McClellan, K. Flash sintering of stoichiometric and hyper-stoichiometric urania. J. Nucl. Mater. 2018, 505, 85–93. [Google Scholar] [CrossRef]
- Charalambous, H.; Jha, S.K.; Wang, H.; Phuah, X.L.; Wang, H.; Tsakalakos, T. Inhomogeneous reduction and its relation to grain growth of titania during flash sintering. Scr. Mater. 2018, 155, 37–40. [Google Scholar] [CrossRef]
- Candelario, V.M.; Moreno, R.; Todd, R.I.; Ortiz, A.L. Liquid-phase assisted flash sintering of SiC from powder mixtures prepared by aqueous colloidal processing. J. Eur. Ceram. Soc. 2017, 37, 485–498. [Google Scholar] [CrossRef]
- Yoshida, H.; Morita, K.; Kim, B.-N.; Sakka, Y.; Yamamoto, T. Reduction in sintering temperature for flash-sintering of yttria by nickel cation-doping. Acta Mater. 2016, 106, 344–352. [Google Scholar] [CrossRef]
- Terauds, K.; Lebrun, J.-M.; Lee, H.-H.; Jeon, T.-Y.; Lee, S.-H.; Je, J.H.; Raj, R. Electroluminescence and the measurement of temperature during Stage III of flash sintering experiments. J. Eur. Ceram. Soc. 2015, 35, 3195–3199. [Google Scholar] [CrossRef]
- Muccillo, R.; Muccillo, E.N.S. Light emission during electric field-assisted sintering of electroceramics. J. Eur. Ceram. Soc. 2015, 35, 1653–1656. [Google Scholar] [CrossRef]
- Yamashita, Y.; Kurachi, T.; Tokunaga, T.; Yoshida, H.; Yamamoto, T. Blue photo luminescence from 3 mol% Y2O3-doped ZrO2 polycrystals sintered by flash sintering under an alternating current electric field. J. Eur. Ceram. Soc. 2019, 40, 2072–2076. [Google Scholar] [CrossRef]
- Charalambous, H.; Jha, S.K.; Okasinski, J.; Tsakalakos, T. Spectral analysis and temperature measurement during flash sintering under AC electric field. Materialia 2020, 6, 100273. [Google Scholar] [CrossRef]
- Jha, S.K.; Terauds, K.; Lebrun, J.-M.; Raj, R. Beyond flash sintering in 3 mol % yttria stabilized zirconia. J. Am. Ceram. Soc. 2016, 124, 283–288. [Google Scholar] [CrossRef]
- Raj, R.; Wol, D.E.; Yamada, C.N.; Jha, S.K.; Lebrun, J.-M. On the confluence of ultrafast high temperature sintering and flash sintering phenomena. J. Am. Ceram. Soc. 2023, 26, 3983–3998. [Google Scholar] [CrossRef]
- Chaim, R. Insights into photoemission origins of flash sintering of ceramics. Scr. Mater. 2021, 196, 113749. [Google Scholar] [CrossRef]
- Bechteler, C.; Kirkpatrick, A.; Todd, R.I. Visible light emissions during flash sintering of 3YSZ are thermal radiation. Scripta Mater. 2022, 2019, 114849. [Google Scholar] [CrossRef]
- Kleitz, M.; Kennedy, J.H. Resolution of multicomponent impedance diagrams. In Fast ion Transport in Solids; Mundy, J.N., Shenoy, G.K., Vashishta, P., Eds.; Elsevier: Amsterdam, The Netherlands, 1979; pp. 185–188. [Google Scholar]
- Barsoukov, J.E. Ross Macdonald, Impedance Spectroscopy—Theory, Experiment, and Applications; Wiley-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- Muccillo, R.; Muccillo, E. Electric field assisted sintering of electroceramics and in situ analysis by impedance spectroscopy. J. Electroceramics 2016, 38, 24–42. [Google Scholar] [CrossRef]
- Hewitt, I.J.; Lacey, A.A.; Todd, R.I. A mathematical model for flash sintering. Math. Model. Nat. Phenom. 2015, 10, 77–89. [Google Scholar] [CrossRef]
- Todd, R.I.; Zapata-Solvas, E.; Bonilla, R.S.; Sneddon, T.; Wilshaw, P.R. Electrical characteristics of flash sintering: Thermal runaway of Joule heating. J. Eur. Ceram. Soc. 2015, 35, 1865–1867. [Google Scholar] [CrossRef]
- Bichaud, E.; Chaix, J.; Carry, C.; Kleitz, M.; Steil, M. Flash sintering incubation in Al2O3/TZP composites. J. Eur. Ceram. Soc. 2015, 35, 2587–2592. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, I. Onset Criterion for Flash Sintering. J. Am. Ceram. Soc. 2015, 98, 3624–3627. [Google Scholar] [CrossRef]
- Available online: https://fityk.nieto.pl (accessed on 2 January 2021).
- Wang, T.-S.; Wang, G.-F.; Qiu, M.-L.; Cheng, W.; Zhang, J.-F.; Zhao, G.-Q. The origin of the 500 nm luminescence band related to oxygen vacancies in ZrO2. J. Lumin. 2021, 237, 118133. [Google Scholar] [CrossRef]
- Dickinson, J.; Langford, S.; Avanesyan, S.; Orlando, S. Color center formation in KCl and KBr single crystals with femtosecond laser pulses. Appl. Surf. Sci. 2007, 253, 7874–7878. [Google Scholar] [CrossRef]
- Costantini, J.-M.; Beuneu, F. Point defects induced in yttria-stabilized zirconia by electron and swift heavy ion irradiations. J. Phys. Condens. Matter 2011, 23, 115902. [Google Scholar] [CrossRef] [PubMed]
- Anselmi-Tamburini, U.; Woolman, J.N.; Munir, Z.A. Transparent Nanometric Cubic and Tetragonal Zirconia Obtained by High-Pressure Pulsed Electric Current Sintering. Adv. Funct. Mater. 2007, 17, 3267–3273. [Google Scholar] [CrossRef]
- Tsukuma, K.; Yamashita, I.; Kusunose, T. Transparent 8 mol% Y2O3–ZrO2 (8Y) Ceramics. J. Am. Ceram. Soc. 2008, 91, 813–818. [Google Scholar] [CrossRef]
Sample, λmax (nm) |
---|
20SDC before flash 610, 750, 940 |
20SDC during flash 517, 610, 690, 750, 940 |
20SDC after flash, 610, 750, 940 |
8YSZ before flash, 610, 750, 940 |
8YSZ during flash 500, 610, 680, 750, 940 |
8YSZ after flash, 610, 750, 940 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muccillo, R.; Diaz, J.C.C.A.; Muccillo, E.N.S. Analysis of the Luminescent Emission during Flash Sintering of 8YSZ and 20SDC Ceramics. Ceramics 2024, 7, 329-341. https://doi.org/10.3390/ceramics7010021
Muccillo R, Diaz JCCA, Muccillo ENS. Analysis of the Luminescent Emission during Flash Sintering of 8YSZ and 20SDC Ceramics. Ceramics. 2024; 7(1):329-341. https://doi.org/10.3390/ceramics7010021
Chicago/Turabian StyleMuccillo, Reginaldo, Julio Cesar C. A. Diaz, and Eliana N. S. Muccillo. 2024. "Analysis of the Luminescent Emission during Flash Sintering of 8YSZ and 20SDC Ceramics" Ceramics 7, no. 1: 329-341. https://doi.org/10.3390/ceramics7010021
APA StyleMuccillo, R., Diaz, J. C. C. A., & Muccillo, E. N. S. (2024). Analysis of the Luminescent Emission during Flash Sintering of 8YSZ and 20SDC Ceramics. Ceramics, 7(1), 329-341. https://doi.org/10.3390/ceramics7010021