Mechanochemically-Assisted Synthesis of Lead-Free Piezoelectric CaZrO3-Modified (K,Na,Li)(Nb,Ta)O3-Solid Solution
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Powder Synthesis
3.2. Ceramics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature 2004, 432, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.J.; Deubzer, O. Lead-free piezoelectrics—The environmental and regulatory issues. MRS Bull. 2018, 43, 581–587. [Google Scholar] [CrossRef]
- Rödel, J.; Li, J.-F. Lead-free piezoceramics: Status and perspectives. MRS Bull. 2018, 43, 576–580. [Google Scholar] [CrossRef]
- Li, J.-F.; Wang, K.; Zhu, F.-Y.; Cheng, L.-Q.; Yao, F.-Z. (K, Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 2013, 96, 3677–3696. [Google Scholar] [CrossRef]
- Koruza, J.; Bell, A.J.; Frömling, T.; Webber, K.G.; Wang, K.; Rödel, J. Requirements for the transfer of lead-free piezoceramics into application. J. Materiomics 2018, 4, 13–26. [Google Scholar] [CrossRef]
- Malič, B.; Koruza, J.; Hreščak, J.; Bernard, J.; Wang, K.; Fisher, J.; Benčan, A. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics. Materials 2015, 8, 8117–8146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Malič, B.; Wu, J. Shifting the phase boundary: Potassium sodium niobate derivates. MRS Bull. 2018, 43, 607–611. [Google Scholar] [CrossRef]
- Hreščak, J.; Bencan, A.; Rojac, T.; Malič, B. The influence of different niobium pentoxide precursors on the solid-state synthesis of potassium sodium niobate. J. Eur. Ceram. Soc. 2013, 33, 3065–3075. [Google Scholar] [CrossRef]
- Hill, V.G.; Chang, L.L.Y.; Harker, R.I. Subsolidus Stability Relations in the System KTaO3−KNbO3. J. Am. Ceram. Soc. 1968, 51, 723–724. [Google Scholar] [CrossRef]
- Jenko, D.; Benčan, A.; Malič, B.; Holc, J.; Kosec, M. Electron microscopy studies of potassium sodium niobate ceramics. Microsc. Microanal. 2005, 11, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Ramajo, L.; Castro, M.; del Campo, A.; Fernandez, J.F.; Rubio-Marcos, F. Influence of B-site compositional homogeneity on properties of (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3-based piezoelectric ceramics. J. Eur. Ceram. Soc. 2014, 34, 2249–2257. [Google Scholar] [CrossRef]
- Wang, Y.; Damjanovic, D.; Klein, N.; Hollenstein, E.; Setter, N. Compositional Inhomogeneity in Li- and Ta-Modified (K,Na)NbO3 Ceramics. J. Am. Ceram. Soc. 2007, 90, 3485–3489. [Google Scholar] [CrossRef]
- Hagh, N.M.; Jadidian, B.; Safari, A. Property-processing relationship in lead-free (K,Na,Li)NbO3-solid solution system. J. Electroceram. 2007, 18, 339–346. [Google Scholar] [CrossRef]
- Rojac, T.; Benčan, A.; Uršič, H.; Malič, B.; Kosec, M. Synthesis of a Li- and Ta-Modified (K,Na)NbO3 Solid Solution by Mechanochemical Activation. J. Am. Ceram. Soc. 2008, 91, 3789–3791. [Google Scholar] [CrossRef]
- Kong, L.B.; Zhang, T.S.; Ma, J.; Boey, F. Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique. Prog. Mater. Sci. 2008, 53, 207–322. [Google Scholar] [CrossRef]
- Rojac, T.; Benčan, A.; Kosec, M. Mechanism and Role of Mechanochemical Activation in the Synthesis of (K,Na,Li)(Nb,Ta)O3 Ceramics. J. Am. Ceram. Soc. 2010, 93, 1619–1625. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, X.; Zhou, G. Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics. Appl. Phys. Lett. 2007, 90, 262903. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, R.; Shrout, T.R.; Wang, J. Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics. J. Appl. Phys. 2006, 100, 104108. [Google Scholar] [CrossRef]
- Wang, K.; Li, J.-F.; Liu, N. Piezoelectric properties of low-temperature sintered Li-modified (Na,K)NbO3 lead-free ceramics. Appl. Phys. Lett. 2008, 93, 092904. [Google Scholar] [CrossRef]
- Skidmore, A.T.; Comyn, T.P.; Milne, S.J. Temperature stability of ([Na0.5K0.5NbO3]0.93–[LiTaO3]0.07) lead-free piezoelectric ceramics. Appl. Phys. Lett. 2009, 94, 222902. [Google Scholar] [CrossRef]
- Zhang, J.L.; Zong, X.J.; Wu, L.; Gao, Y.; Zheng, P.; Shao, S.F. Polymorphic phase transition and excellent piezoelectric performance of (K0.55Na0.45)0.965Li0.035Nb0.80Ta0.20O3 lead-free ceramics. Appl. Phys. Lett. 2009, 95, 022909. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, R.; Shrout, T.R. Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range. Appl. Phys. Lett. 2007, 91, 132913. [Google Scholar] [CrossRef]
- Akdoğan, E.K.; Kerman, K.; Abazari, M.; Safari, A. Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)−(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl. Phys. Lett. 2008, 92, 112908. [Google Scholar] [CrossRef]
- Hollenstein, E.; Damjanovic, D.; Setter, N. Temperature stability of the piezoelectric properties of Li-modified KNN ceramics. J. Eur. Ceram. Soc. 2007, 27, 4093–4097. [Google Scholar] [CrossRef]
- Wang, K.; Yao, F.-Z.; Jo, W.; Gobeljic, D.; Shvartsman, V.V.; Lupascu, D.C.; Li, J.-F.; Rödel, J. Temperature-Insensitive (K,Na)NbO3-Based Lead-Free Piezoactuator Ceramics. Adv. Funct. Mater. 2013, 23, 4079–4086. [Google Scholar] [CrossRef]
- Yao, F.-Z.; Wang, K.; Jo, W.; Webber, K.G.; Comyn, T.P.; Ding, J.-X.; Xu, B.; Cheng, L.-Q.; Zheng, M.-P.; Hou, Y.-D.; et al. Diffused Phase Transition Boosts Thermal Stability of High-Performance Lead-Free Piezoelectrics. Adv. Funct. Mater. 2016, 26, 1217–1224. [Google Scholar] [CrossRef] [Green Version]
- Yao, F.-Z.; Patterson, E.A.; Wang, K.; Jo, W.; Rödel, J.; Li, J.-F. Enhanced bipolar fatigue resistance in CaZrO3-modified (K,Na)NbO3 lead-free piezoceramics. Appl. Phys. Lett. 2014, 104, 242912. [Google Scholar] [CrossRef]
- Wang, K.; Yao, F.-Z.; Koruza, J.; Cheng, L.-Q.; Schader, F.H.; Zhang, M.-H.; Rödel, J.; Li, J.-F.; Webber, K.G. Electromechanical properties of CaZrO3 modified (K,Na)NbO3-based lead-free piezoceramics under uniaxial stress conditions. J. Am. Ceram. Soc. 2017, 100, 2116–2122. [Google Scholar] [CrossRef]
- Thong, H.-C.; Li, Q.; Zhang, M.-H.; Zhao, C.; Huang, K.X.; Li, J.-F.; Wang, K. Defect suppression in CaZrO3-modified (K, Na)NbO3-based lead-free piezoceramic by sintering atmosphere control. J. Am. Ceram. Soc. 2018, 101, 3393–3401. [Google Scholar] [CrossRef]
- ICDD. PDF-4 2017 (Database); International Centre for Diffraction Data: Newtown Square, PA, USA, 2017. [Google Scholar]
- Yin, N.; Jalalian, A.; Zhao, L.; Gai, Z.; Cheng, Z.; Wang, X. Correlation between crystal structures, Raman scattering and piezoelectric properties of lead-free Na0.5K0.5NbO3. J. Alloys Compd. 2015, 652, 341–345. [Google Scholar] [CrossRef]
- Boucher, B.; Buhl, R.; Perrin, M. Proprietes et structure magnetique de Mn3O4. J. Phys. Chem. Solids 1971, 32, 2429–2437. [Google Scholar] [CrossRef]
- Cheary, R.W.; Coelho, A. A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 1992, 25, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Rojac, T.; Kosec, M.; Segedin, P.; Malic, B.; Holc, J. The formation of a carbonato complex during the mechanochemical treatment of a Na2CO3–Nb2O5 mixture. Solid State Ion. 2006, 177, 2987–2995. [Google Scholar] [CrossRef]
- Rojac, T.; Kosec, M.; Połomska, M.; Hilczer, B.; Šegedin, P.; Bencan, A. Mechanochemical reaction in the K2CO3–Nb2O5 system. J. Eur. Ceram. Soc. 2009, 29, 2999–3006. [Google Scholar] [CrossRef]
- Liptay, G. Atlas of Thermoanalytical Curves; Akademiai Kiado: Budapest, Hungary, 1977. [Google Scholar]
- Lee, K.-S.; Kim, I.W. New Phase Transition at 155 K and Thermal Stability in KHCO3. J. Phys. Soc. Jpn. 2001, 70, 3581–3584. [Google Scholar] [CrossRef]
- Hreščak, J.; Malič, B.; Cilenšek, J.; Benčan, A. Solid-state synthesis of undoped and Sr-doped K0.5Na0.5NbO3. J. Therm. Anal. Calorim. 2016, 127, 129–136. [Google Scholar] [CrossRef]
- Malič, B.; Jenko, D.; Holc, J.; Hrovat, M.; Kosec, M. Synthesis of Sodium Potassium Niobate: A Diffusion Couples Study. J. Am. Ceram. Soc. 2008, 91, 1916–1922. [Google Scholar] [CrossRef]
- Lee, G.-J.; Park, E.-K.; Yang, S.-A.; Park, J.-J.; Bu, S.-D.; Lee, M.-K. Rapid and direct synthesis of complex perovskite oxides through a highly energetic planetary milling. Sci. Rep. 2017, 7, 46241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mgbemere, H.E.; Hinterstein, M.; Schneider, G.A. Electrical and structural characterization of (KxNa1−x)NbO3 ceramics modified with Li and Ta. J. Appl. Crystallogr. 2011, 44, 1080–1089. [Google Scholar] [CrossRef]
- Tinsley, D.M.; Sharp, J.H. Thermal analysis of manganese dioxide in controlled atmospheres. J. Therm. Anal. 1971, 3, 43–48. [Google Scholar] [CrossRef]
- Saito, Y.; Takao, H. High Performance Lead-free Piezoelectric Ceramics in the (K,Na)NbO3-LiTaO3 Solid Solution System. Ferroelectrics 2006, 338, 17–32. [Google Scholar] [CrossRef]
CSS | MCA | |||||
---|---|---|---|---|---|---|
Phase type | Three-phase | Three-phase | ||||
Phase | KNLNT | KNLNT | Mn3O4 | KNLNT | KNLNT | Mn3O4 |
Crystal system | Orthorhombic | Tetragonal | Tetragonal | Orthorhombic | Tetragonal | Tetragonal |
Space group | Bmm2 | P4mm | I41/amd | Bmm2 | P4mm | I41/amd |
Weight fraction (%) | 38.6(4) | 60.4(4) | 1.02(4) | 40.7(4) | 58.3(4) | 1.07(5) |
a (Å) | 5.6234(10) | 3.97178(8) | 5.7639(5) | 5.6222(15) | 3.97217(8) | 5.7632(5) |
b (Å) | 3.98817(12) | - | - | 3.98620(12) | - | - |
c (Å) | 5.6225(11) | 3.99222(12) | 9.4598(14) | 5.6219(15) | 3.99119(13) | 9.4572(15) |
V (Å3) | 126.10(3) | 62.978(3) | 314.27(7) | 125.99(5) | 62.973(3) | 314.12(7) |
Z | 2 | 1 | 4 | 2 | 1 | 4 |
Refinement | ||||||
Rwp | 7.33 | 8.03 | ||||
Rexp | 5.72 | 5.95 | ||||
Rp | 5.44 | 6.08 | ||||
G.O.F. (χ2) | 1.28 | 1.35 | ||||
Rb | 1.730 | 1.360 | 3.822 | 2.166 | 1.502 | 3.654 |
CSS | MCA | |
---|---|---|
(ε/ε0)unpoled (/) 1 | 1820 | 1996 |
(tanδ)unpoled (/) 1 | 0.026 | 0.035 |
(ε/ε0)poled (/) 1 | 1792 | 1918 |
(tanδ)poled (/) 1 | 0.026 | 0.034 |
d33 (pC/N) | 130 | 140 |
kp (/) | 0.23 | 0.27 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radan, K.; Kmet, B.; Drnovšek, S.; Prah, U.; Rojac, T.; Malič, B. Mechanochemically-Assisted Synthesis of Lead-Free Piezoelectric CaZrO3-Modified (K,Na,Li)(Nb,Ta)O3-Solid Solution. Ceramics 2018, 1, 304-318. https://doi.org/10.3390/ceramics1020024
Radan K, Kmet B, Drnovšek S, Prah U, Rojac T, Malič B. Mechanochemically-Assisted Synthesis of Lead-Free Piezoelectric CaZrO3-Modified (K,Na,Li)(Nb,Ta)O3-Solid Solution. Ceramics. 2018; 1(2):304-318. https://doi.org/10.3390/ceramics1020024
Chicago/Turabian StyleRadan, Kristian, Brigita Kmet, Silvo Drnovšek, Uroš Prah, Tadej Rojac, and Barbara Malič. 2018. "Mechanochemically-Assisted Synthesis of Lead-Free Piezoelectric CaZrO3-Modified (K,Na,Li)(Nb,Ta)O3-Solid Solution" Ceramics 1, no. 2: 304-318. https://doi.org/10.3390/ceramics1020024
APA StyleRadan, K., Kmet, B., Drnovšek, S., Prah, U., Rojac, T., & Malič, B. (2018). Mechanochemically-Assisted Synthesis of Lead-Free Piezoelectric CaZrO3-Modified (K,Na,Li)(Nb,Ta)O3-Solid Solution. Ceramics, 1(2), 304-318. https://doi.org/10.3390/ceramics1020024