Scenario-Based Analysis of the Future Technological Trends in the Automotive Sector in Southeast Lower-Saxony
Abstract
1. Introduction
2. State of the Art
2.1. Scenario Management
2.2. Technological Transformation of the Automotive Industry
2.3. Southeast Lower Saxonies Mobility Sector
3. Scenario Management Method
3.1. Scenario Preparation
3.2. Scenariofield Analysis
3.3. Projection Development
3.4. Scenario Development Method
3.5. Scenario Description
3.6. Scenario Transfer
4. Results
4.1. Scenario Preparation Results
4.2. Scenariofield Analysis Results
4.3. Projection Development Results
4.4. Scenario Development
4.5. Scenario Description Results
4.5.1. Scenario 1: Innovation Standstill and Societal Withdrawal
Economic Environment
Society, Environment, and Politics
Acceptance of and Need for Mobility
4.5.2. Scenario 2: Breakthrough in Innovation Centers
Economic Environment
Society, Environment, and Politics
Acceptance and Need for Mobility
4.5.3. Scenario 3: Connected Transition Phase
Economic Environment
Society, Environment, and Politics
Acceptance and Need for Mobility
4.6. Scenario Transfer Results
5. Discussion
6. Conclusions
7. Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cetrulo, A.; Dosi, G.; Moro, A.; Nelli, L.; Virgillito, M.E. Automation, Digitalization and Decarbonization in the European Automotive Industry: A Roadmap Towards a Just Transition; LEM Working Paper Series 2023/36; Scuola Superiore Sant’Anna, Laboratory of Economics and Management (LEM): Pisa, Italy, 2023; Available online: https://hdl.handle.net/10419/297144 (accessed on 5 December 2025).
- Frieske, B.; Hasselwander, S.; Deniz, Ö.; Stieler, S.; Schumich, S. Scenario-Based Analysis of Electrification Effects on Value Creation and Employment Structures for the Automotive Industry in the Federal State of Baden-Wuerttemberg, Germany. World Electr. Veh. J. 2024, 15, 480. [Google Scholar] [CrossRef]
- Amer, M.; Daim, T.U.; Jetter, A. A review of scenario planning. Futures 2013, 46, 23–40. [Google Scholar] [CrossRef]
- Hoffmann, C.H. Strengths and Weaknesses of Scenario Planning as a Risk Management Tool. In Assessing Risk Assessment; Hoffmann, C.H., Ed.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2017; pp. 213–218. ISBN 978-3-658-20031-2. [Google Scholar]
- Geschka, H.; von Reibnitz, U. Zukunftsanalysen mit Hilfe von Szenarien-erläutert an einem Fallbeispiel “Freizeit im Jahr 2000”. Politische Didakt. 1979, 4, 21–101. [Google Scholar]
- Gausemeier, J. Zukunftsorientierte Unternehmensgestaltung. Z. Wirtsch. Fabr. 2009, 104, 623–626. [Google Scholar] [CrossRef]
- Gausemeier, J.; Fink, A.; Schlake, O. Szenario-Management: Planen und Führen Mit Szenarien; Hanser Fachbuch: Munich, Germany, 1996. [Google Scholar]
- OECD. The Future of the Automotive Value Chain: Implications for FDI-SME Linkages; OECD SME and Entrepreneurship Papers; OECD: Paris, France, 2024. [Google Scholar] [CrossRef]
- Valladares Montemayor, H.M.; Chanda, R.H. Automotive industry’s circularity applications and industry 4.0. Environ. Chall. 2023, 12, 100725. [Google Scholar] [CrossRef]
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Rísquez Ramos, M.; Ruiz-Gálvez, M.E. The transformation of the automotive industry toward electrification and its impact on global value chains: Inter-plant competition, employment, and supply chains. Eur. Res. Manag. Bus. Econ. 2024, 30, 100242. [Google Scholar] [CrossRef]
- ISO/SAE PAS 22736:2021; Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. SAE International: Warrendale, PA, USA, 2021.
- Todorovic, M.; Aldakkhelallah, A.; Simic, M. Managing Transitions to Autonomous and Electric Vehicles: Scientometric and Bibliometric Review. World Electr. Veh. J. 2023, 14, 314. [Google Scholar] [CrossRef]
- Garikapati, D.; Shetiya, S.S. Autonomous Vehicles: Evolution of Artificial Intelligence and the Current Industry Landscape. Big Data Cogn. Comput. 2024, 8, 42. [Google Scholar] [CrossRef]
- Nolte, B.; Stein, A.; Vietor, T. Designing a Method for Identifying Functional Safety and Cybersecurity Requirements Utilizing Model-Based Systems Engineering. Appl. Syst. Innov. 2025, 8, 45. [Google Scholar] [CrossRef]
- Kizgin, U.V.; Stein, A.; Esapathi, J.; Vietor, T. Systematic Method for Identifying Safety and Security Requirements in Autonomous Driving: Case Study of Autonomous Intersection System. Appl. Syst. Innov. 2025, 8, 168. [Google Scholar] [CrossRef]
- Abdelkader, G.; Elgazzar, K.; Khamis, A. Connected Vehicles: Technology Review, State of the Art, Challenges and Opportunities. Sensors 2021, 21, 7712. [Google Scholar] [CrossRef]
- Monye, S.I.; Afolalu, S.A.; Lawal, S.L.; Oluwatoyin, O.A.; Adeyemi, A.G.; Ughapu, E.I.; Adegbenjo, A. Impact of Industry (4.O) in Automobile Industry. E3S Web Conf. 2023, 430, 1222. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, B.; Wu, V.; Yang, X.; Wang, L. Review of Digital Twin in the Automotive Industry on Products, Processes and Systems. Int. J. Automot. Manuf. Mater. 2025, 4, 6. [Google Scholar] [CrossRef]
- Yang, J.; Li, B.; Liu, J.; Tu, Z.; Wu, X. Application of Additive Manufacturing in the Automobile Industry: A Mini Review. Processes 2024, 12, 1101. [Google Scholar] [CrossRef]
- Poligkeit, J.; Fugger, T.; Herrmann, C. Decarbonization in the Automotive Sector: A Holistic Status Quo Analysis of Original Equipment Manufacturer Strategies and Carbon Management Activities. Sustainability 2023, 15, 15753. [Google Scholar] [CrossRef]
- Bieker, G. A Global Comparison of the Life-Cycle Greenhouse Gas Emissions of Combustion Engine and Electric Passenger Cars; White paper; International Council on Clean Transportation: Washington, DC, USA, 2021; Available online: https://theicct.org/publication/a-global-comparison-of-the-life-cycle-greenhouse-gas-emissions-of-combustion-engine-and-electric-passenger-cars/ (accessed on 21 August 2025).
- Tankou, A.; Bieker, G.; Hall, D. Scaling Up Reuse and Recycling of Electric Vehicle Batteries: Assessing Challenges and Policy Approaches; White paper; International Council on Clean Transportation: Washington, DC, USA, 2023; Available online: https://theicct.org/publication/recycling-electric-vehicle-batteries-feb-23/ (accessed on 21 August 2025).
- Czerwinski, F. Critical Minerals for Zero-Emission Transportation. Materials 2022, 15, 5539. [Google Scholar] [CrossRef]
- Montana, F.; Cellura, M.; Di Silvestre, M.L.; Longo, S.; Le Luu, Q.; Riva Sanseverino, E.; Sciumè, G. Assessing Critical Raw Materials and Their Supply Risk in Energy Technologies—A Literature Review. Energies 2025, 18, 86. [Google Scholar] [CrossRef]
- Tietge, U.; Dornoff, J.; Mock, P. CO2 Emissions from New Passenger Cars in Europe: Car Manufacturers’ Performance in 2023; Research brief; International Council on Clean Transportation: Washington, DC, USA, 2024; Available online: https://theicct.org/publication/co2-emissions-new-pv-europe-car-manufacturers-performance-2023-sept24/ (accessed on 21 August 2025).
- Wang, N.; Li, X.; Yang, X. The Efficacy of the New Energy Vehicle Mandate Policy on Passenger Vehicle Market in China. World Electr. Veh. J. 2025, 16, 151. [Google Scholar] [CrossRef]
- Bjerkan, K.Y.; Nørbech, T.E.; Nordtømme, M.E. Incentives for promoting Battery Electric Vehicle (BEV) adoption in Norway. Transp. Res. Part D Transp. Environ. 2016, 43, 169–180. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, W. The role of urban form in the performance of shared automated vehicles. Transp. Res. Part D Transp. Environ. 2021, 93, 102744. [Google Scholar] [CrossRef]
- Easton, C. Autonomous Vehicles: An Analysis of the Regulatory and Legal Landscape. In Future Law: Emerging Technology, Regulation and Ethics; Edwards, L., Burkhard, S., Harbinja, E., Eds.; Edinburgh University Press: Edinburgh, UK, 2020; pp. 313–340. [Google Scholar]
- Hainley, T.K. National Regulatory Framework for Autonomous Vehicles: Why the United States Must Look Abroad to Find Answers. Ga. J. Int. Comp. Law 2024, 52, 191. [Google Scholar]
- Zhang, L.; Shi, W. The Impacts of the US Inflation Reduction Act on EV Supply Chains. Sustainability 2025, 17, 653. [Google Scholar] [CrossRef]
- Gomes, A.D.P.; Pauls, R.; ten Brink, T. Industrial policy and the creation of the electric vehicles market in China: Demand structure, sectoral complementarities and policy coordination. Camb. J. Econ. 2023, 47, 45–66. [Google Scholar] [CrossRef]
- Arndt, O.; Schwienbacher, J.; Ulbrich, T.; Janshen, R.; Eberle, J.; Malik, F.; Mahle, M. Situations-und Chancen-Risiko-Analyse zur Regionalen Mobilitätswirtschaft; Bericht; Regionales Transformationsnetzwerk Südostniedersachsen: Braunschweig, Germany, 2023; Available online: https://retrason.de/wp-content/uploads/2023/06/ReTraSON_Prognosbericht_WEB.pdf (accessed on 21 August 2025).
- Krüger, B.; Stein, A.; Gründker, L.; Vietor, T. Analyzing SME Digitalization Requirements Through a Technology Radar Framework in Southeast Lower Saxony. Digital 2025, 5, 60. [Google Scholar] [CrossRef]
- Duperrin, J.C.; Godet, M. Méthode de Hiérarchisation des Éléments d’un Système—Essai de Prospective du Système de L’énergie Nucléaire dans son Contexte Sociétal R4541; French Alternative Energies and Atomic Energy Commission: Paris, France, 1973. [Google Scholar]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Published by MDPI on behalf of the International Institute of Knowledge Innovation and Invention. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Stein, A.; Everding, L.; Münchhausen, H.; Krüger, B.; Hichri, B.; Flormann, M.; Sturm, A.W.; Vietor, T. Scenario-Based Analysis of the Future Technological Trends in the Automotive Sector in Southeast Lower-Saxony. Appl. Syst. Innov. 2026, 9, 28. https://doi.org/10.3390/asi9020028
Stein A, Everding L, Münchhausen H, Krüger B, Hichri B, Flormann M, Sturm AW, Vietor T. Scenario-Based Analysis of the Future Technological Trends in the Automotive Sector in Southeast Lower-Saxony. Applied System Innovation. 2026; 9(2):28. https://doi.org/10.3390/asi9020028
Chicago/Turabian StyleStein, Armin, Lars Everding, Henrik Münchhausen, Björn Krüger, Bassem Hichri, Maximilian Flormann, Axel Wolfgang Sturm, and Thomas Vietor. 2026. "Scenario-Based Analysis of the Future Technological Trends in the Automotive Sector in Southeast Lower-Saxony" Applied System Innovation 9, no. 2: 28. https://doi.org/10.3390/asi9020028
APA StyleStein, A., Everding, L., Münchhausen, H., Krüger, B., Hichri, B., Flormann, M., Sturm, A. W., & Vietor, T. (2026). Scenario-Based Analysis of the Future Technological Trends in the Automotive Sector in Southeast Lower-Saxony. Applied System Innovation, 9(2), 28. https://doi.org/10.3390/asi9020028

