Shear Strength Prediction for RCDBs Utilizing Data-Driven Machine Learning Approach: Enhanced CatBoost with SHAP and PDPs Analyses
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Database of RCDBs
2.1.1. Database Description
- Specimens with only rectangular cross-sections were considered (a/d ≤ 2.5).
- Specimens were cast using low to high-strength concrete.
- Specimens with different web reinforcements were considered.
- Specimens with only deformed steel bars were considered (no limit on yield strength).
- Specimens were tested under three-point or four-point or monotonic loads.
- Specimens with axial or prestressed or post-tensioned loading were not considered.
- Specimen’s ultimate shear strength is less than 2000 kN.
- Specimens with only adequate information were recorded.
2.1.2. Feature Selection
2.1.3. Preprocessing of Database
2.2. Overview of Selected ML Algorithms
2.2.1. Random Forest (RF)
2.2.2. Extra Trees (ET)
2.2.3. AdaBoost (AB)
2.2.4. CatBoost (CB)
2.3. Hyperparameter Tuning
2.4. Performance Metrics
2.5. Interpretation of Predictive ML
2.5.1. SHAP Algorithm
2.5.2. Partial Dependency Plots (PDPs)
3. Results and Discussion
3.1. 10-Fold CV Performance Evaluation
3.2. Overall Performance Evaluation
3.3. Bias-Variance Analysis
3.4. Prediction Accuracy of CB Model
3.5. Comparison with Mechanics-Driven Models
3.6. Interpretation of CB Model
3.6.1. Feature Importance (FI)
3.6.2. Global Interpretation
3.6.3. Local Interpretation
3.6.4. PDPs Analysis
4. Conclusions
- The CB model achieved the highest prediction accuracy (R2) and lowest errors (RMSE, MAE, and MAPE) compared to three other data-driven models, such as RF, ET, and AB.
- The CB model significantly outperformed the traditional mechanics-driven models such as ACI 318, CSA A23.3, and EU2 in terms of mean, SD, and COV.
- SHAP analysis revealed that CB models can efficiently capture the shear mechanism of RCDBs, which showed similar trends with mechanics-driven models. The geometric dimensions and concrete properties are the most influential input features on SS of RCDBs, followed by reinforcement properties.
- PDPs analysis indicated that SS of RCDBs can be significantly improved by increasing the values of , , and up to approximately 300 mm, 80 MPa, and 6%, respectively. In contrast, increasing the value of up to 2.5 can negatively influence the SS.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Networks |
KNN | K-Nearest Neighbor |
LR | Linear Regression |
VR | Voting Regressor |
GPR | Gaussian Process Regression |
SVR | Support Vector Regression |
SVM | Support Vector Machine |
LS-SVR | Least Squares-Support Vector Regression |
LS-SVM | Least Squares-Support Vector Machine |
OSVM-AEW | Optimized Support Vector Machine -Adaptive Ensemble Weighting |
ANFIS | Adaptive Network-Fuzzy Inference System |
SFA | Smart Firefly Algorithm |
SOS | Symbiotic Organism Search |
RF | Random Forest |
DT | Decision Tree |
EoT | Ensemble of Trees |
GBRT | Gradient Boosting Regression Tree |
AdaBoost | Adaptive Boosting |
XGBoost | Extreme Gradient Boosting |
CatBoost | Categorical Boosting |
Appendix A
- US Code: ACI 318 [100]
- European Code: EU2 [102]
References
- Ma, C.; Xie, C.; Tuohuti, A.; Duan, Y. Analysis of influencing factors on shear behavior of the reinforced concrete deep beams. J. Build. Eng. 2022, 45, 103383. [Google Scholar] [CrossRef]
- Abbood, I.S. Strut-and-tie model and its applications in reinforced concrete deep beams: A comprehensive review. Case Stud. Constr. Mater. 2023, 19, e02643. [Google Scholar] [CrossRef]
- Sanad, A.; Saka, M.P. Prediction of ultimate shear strength of reinforced-concrete deep beams using neural networks. J. Struct. Eng. 2001, 127, 818–828. [Google Scholar] [CrossRef]
- Pal, M.; Deswal, S. Support vector regression based shear strength modelling of deep beams. Comput. Struct. 2011, 89, 1430–1439. [Google Scholar] [CrossRef]
- Mohammadhassani, M.; Saleh, A.M.D.; Suhatril, M.; Safa, M. Fuzzy modelling approach for shear strength prediction of RC deep beams. Smart Struct. Syst. 2015, 16, 497–519. [Google Scholar] [CrossRef]
- Chou, J.-S.; Ngo, N.-T.; Pham, A.-D. Shear strength prediction in reinforced concrete deep beams using nature-inspired metaheuristic support vector regression. J. Comput. Civ. Eng. 2016, 30, 04015002. [Google Scholar] [CrossRef]
- Shahnewaz, M.; Rteil, A.; Alam, M.S. Shear strength of reinforced concrete deep beams—A review with improved model by genetic algorithm and reliability analysis. Structures 2020, 23, 494–508. [Google Scholar] [CrossRef]
- Prayogo, D.; Cheng, M.-Y.; Wu, Y.-W.; Tran, D.-H. Combining machine learning models via adaptive ensemble weighting for prediction of shear capacity of reinforced-concrete deep beams. Eng. Comput. 2020, 36, 1135–1153. [Google Scholar] [CrossRef]
- Feng, D.-C.; Wang, W.-J.; Mangalathu, S.; Hu, G.; Wu, T. Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements. Eng. Struct. 2021, 235, 111979. [Google Scholar] [CrossRef]
- Truong, G.T.; Choi, K.-K.; Nguyen, T.-H.; Kim, C.-S. Prediction of shear strength of RC deep beams using XGBoost regression with Bayesian optimization. Eur. J. Environ. Civ. Eng. 2023, 27, 4046–4066. [Google Scholar] [CrossRef]
- Ma, C.; Wang, S.; Zhao, J.; Xiao, X.; Xie, C.; Feng, X. Prediction of shear strength of RC deep beams based on interpretable machine learning. Constr. Build. Mater. 2023, 387, 131640. [Google Scholar] [CrossRef]
- Nguyen, K.L.; Trinh, H.T.; Nguyen, T.T.; Nguyen, H.D. Comparative study on the performance of different machine learning techniques to predict the shear strength of RC deep beams: Model selection and industry implications. Expert Syst. Appl. 2023, 230, 120649. [Google Scholar] [CrossRef]
- Tiwari, A.; Gupta, A.K.; Gupta, T. A robust approach to shear strength prediction of reinforced concrete deep beams using ensemble learning with SHAP interpretability. Soft Comput. 2024, 28, 6343–6365. [Google Scholar] [CrossRef]
- Adebar, P. One-way shear strength of large footings. Can. J. Civ. Eng. 2000, 27, 553–562. [Google Scholar] [CrossRef]
- Aguilar, G.; Matamoros, A.B.; Parra-Montesinos, G.J.; Ramirez, J.A.; Wight, J.K. Experimental evaluation of design procedures for shear strength of deep reinforced concrete beams. ACI Struct. J. 2002, 99, 539–548. [Google Scholar] [CrossRef]
- Ahmad, S.H.; Lue, D.M. Flexure-shear interaction of reinforced high strength concrete beams. ACI Struct. J. 1987, 84, 330–341. [Google Scholar] [CrossRef]
- Ahmad, S.H.; Xie, Y.; Yu, T. Shear ductility of reinforced lightweight concrete beams of normal strength and high strength concrete. Cem. Concr. Compos. 1995, 17, 147–159. [Google Scholar] [CrossRef]
- Akkaya, H.C.; Aydemir, C.; Arslan, G. Investigation on shear behavior of reinforced concrete deep beams without shear reinforcement strengthened with fiber reinforced polymers. Case Stud. Constr. Mater. 2022, 17, e01392. [Google Scholar] [CrossRef]
- Albidah, A.S.; Alqarni, A.S.; Wasim, M.; Abadel, A.A. Influence of aggregate source and size on the shear behavior of high strength reinforced concrete deep beams. Case Stud. Constr. Mater. 2023, 19, e02260. [Google Scholar] [CrossRef]
- Alcocer, S.M.; Uribe, C.M. Monolithic and cyclic behavior of deep beams designed using strut-and-tie models. ACI Struct. J. 2008, 105, 327–337. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Aghayari, R.; Rahai, A.R. Investigation of experimental and analytical shear strength of reinforced concrete deep beams. Int. J. Civ. Eng. 2011, 9, 207–214. [Google Scholar]
- Brena, S.F.; Roy, N.C. Evaluation of load transfer and strut strength of deep beams with short longitudinal bar anchorages. ACI Struct. J. 2009, 106, 678–689. [Google Scholar] [CrossRef]
- Clark, A.P. Diagonal tension in reinforced concrete beams. ACI J. Proc. 1951, 48, 145–156. [Google Scholar] [CrossRef]
- Demir, A.; Caglar, N.; Ozturk, H. Parameters affecting diagonal cracking behavior of reinforced concrete deep beams. Eng. Struct. 2019, 184, 217–231. [Google Scholar] [CrossRef]
- El-Sayed, A.K.; Shuraim, A.B. Size effect on shear resistance of high strength concrete deep beams. Mater. Struct. 2016, 49, 1871–1882. [Google Scholar] [CrossRef]
- Garay, J.D.D.; Lubell, A.S. Behavior of concrete deep beams with high strength reinforcement. In Proceedings of the Structures Congress 2008: Crossing Borders, Vancouver, BC, Canada, 24–26 April 2008; pp. 1–10. [Google Scholar]
- Garay-Moran, J.d.D.; Lubell, A.S. Behavior of deep beams containing high-strength longitudinal reinforcement. ACI Struct. J. 2016, 113, 17–28. [Google Scholar] [CrossRef]
- Gerhard, T.S.; Manuel, R.F. Diagonal crack width control in short beams. ACI J. Proc. 1971, 68, 451–455. [Google Scholar] [CrossRef]
- Gong, S. The shear strength capability of reinforced concrete deep beam under symmetric concentrated loads. J. Zhengzhou Technol. Inst. 1982, 1, 52–68. (In Chinese) [Google Scholar]
- Hassan, T.K.; Seliem, H.M.; Dwairi, H.; Rizkalla, S.H.; Zia, P. Shear behavior of large concrete beams reinforced with high-strength steel. ACI Struct. J. 2008, 105, 173–179. [Google Scholar] [CrossRef]
- Ismail, K.S.; Guadagnini, M.; Pilakoutas, K. Shear behavior of reinforced concrete deep beams. ACI Struct. J. 2017, 114, 87–99. [Google Scholar] [CrossRef]
- Kani, G.N.J. How safe are our large reinforced concrete beams? ACI J. Proc. 1967, 64, 128–141. [Google Scholar] [CrossRef]
- Kondalraj, R.; Rao, G.A. Experimental verification of ACI 318 strut-and-tie method for design of deep beams without web reinforcement. ACI Struct. J. 2021, 118, 139–152. [Google Scholar] [CrossRef]
- Kong, F.-K.; Robins, P.J.; Cole, D.F. Web reinforcement effects on deep beams. ACI J. Proc. 1970, 67, 1010–1018. [Google Scholar] [CrossRef]
- Kong, P.Y.L.; Rangan, B.V. Shear strength of high-performance concrete beams. ACI Struct. J. 1998, 95, 677–688. [Google Scholar] [CrossRef]
- Lee, D. An experimental investigation in the effects of detailing on the shear behaviour of deep beams. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 1982. [Google Scholar]
- Leonhardt, F.; Walther, R. The stuttgart shear tests. 318Reference 1962, 11, 134. [Google Scholar]
- Li, Y.; Chen, H.; Yi, W.-J.; Peng, F.; Li, Z.; Zhou, Y. Effect of member depth and concrete strength on shear strength of RC deep beams without transverse reinforcement. Eng. Struct. 2021, 241, 112427. [Google Scholar] [CrossRef]
- Liu, L.; Xie, L.; Chen, M. The shear strength capability of reinforced concrete deep flexural member. Build. Struct. 2000, 30, 19–22. (In Chinese) [Google Scholar]
- Londhe, R.S. Shear strength analysis and prediction of reinforced concrete transfer beams in high-rise buildings. Struct. Eng. Mech. 2011, 37, 39–59. [Google Scholar] [CrossRef]
- Lu, W.-Y.; Chu, C.-H. Tests of high-strength concrete deep beams. Mag. Concr. Res. 2019, 71, 184–194. [Google Scholar] [CrossRef]
- Lu, W.-Y.; Lin, I.-J.; Yu, H.-W. Shear strength of reinforced concrete deep beams. ACI Struct. J. 2013, 110, 671–680. [Google Scholar] [CrossRef]
- Manuel, R.F. Failure of deep beams. ACI Symp. Publ. 1974, 42, 425–440. [Google Scholar] [CrossRef]
- Manuel, R.F.; Slight, B.W.; Suter, G.T. Deep beam behavior affected by length and shear span variations. ACI J. Proc. 1971, 68, 954–958. [Google Scholar] [CrossRef]
- Mathey, R.G.; Watstein, D. Shear strength of beams without web reinforcement containing deformed bars of different yield strengths. ACI J. Proc. 1963, 60, 183–208. [Google Scholar] [CrossRef]
- Mihaylov, B.I.; Bentz, E.C.; Collins, M.P. Behavior of large deep beams subjected to monotonic and reversed cyclic shear. ACI Struct. J. 2010, 107, 726–734. [Google Scholar] [CrossRef]
- Mohammadhassani, M.; Jumaat, M.Z.; Jameel, M.; Badiee, H.; Arumugam, A.M.S. Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams: An experimental investigation. Nucl. Eng. Des. 2012, 250, 116–124. [Google Scholar] [CrossRef]
- Moody, K.G.; Viest, I.M.; Elstner, R.C.; Hognestad, E. Shear strength of reinforced concrete beams part 1-tests of simple beams. ACI J. Proc. 1954, 51, 317–332. [Google Scholar] [CrossRef]
- Morrow, J.; Viest, I.M. Shear strength of reinforced concrete frame members without web reinforcement. ACI J. Proc. 1957, 53, 833–869. [Google Scholar] [CrossRef]
- Mphonde, A.G.; Frantz, G.C. Shear tests of high- and low-strength concrete beams without stirrups. ACI J. Proc. 1984, 81, 350–357. [Google Scholar] [CrossRef]
- Oh, J.-K.; Shin, S.-W. Shear strength of reinforced high-strength concrete deep beams. ACI Struct. J. 2001, 98, 164–173. [Google Scholar] [CrossRef]
- Paiva, H.A.R.d.; Siess, C.P. Strength and behavior of deep beams in shear. J. Struct. Div. 1965, 91, 19–41. [Google Scholar] [CrossRef]
- Pendyala, R.S.; Mendis, P. Experimental study on shear strength of high-strength concrete beams. ACI Struct. J. 2000, 97, 564–571. [Google Scholar] [CrossRef]
- Proestos, G.T.; Bentz, E.C.; Collins, M.P. Maximum shear capacity of reinforced concrete members. ACI Struct. J. 2018, 115, 1463–1473. [Google Scholar] [CrossRef]
- Quintero-Febres, C.G.; Parra-Montesinos, G.; Wight, J.K. Strength of struts in deep concrete members designed using strut-and-tie method. ACI Struct. J. 2006, 103, 577–586. [Google Scholar] [CrossRef]
- Ramakrishnan, V.; Ananthanarayana, Y. Ultimate strength of deep beams in shear. ACI J. Proc. 1968, 65, 87–98. [Google Scholar] [CrossRef]
- Rogowsky, D.M.; MacGregor, J.G.; Ong, S.Y. Tests of reinforced concrete deep beams. ACI J. Proc. 1986, 83, 614–623. [Google Scholar] [CrossRef]
- Roller, J.J.; Russel, H.G. Shear strength of high-strength concrete beams with web reinforcement. ACI Struct. J. 1990, 87, 191–198. [Google Scholar] [CrossRef]
- Sagaseta, J.; Vollum, R.L. Shear design of short-span beams. Mag. Concr. Res. 2010, 62, 267–282. [Google Scholar] [CrossRef]
- Sahoo, D.K.; Sagi, M.S.V.; Singh, B.; Bhargava, P. Effect of detailing of web reinforcement on the behavior of bottle-shaped struts. J. Adv. Concr. Technol. 2010, 8, 303–314. [Google Scholar] [CrossRef]
- Salamy, M.R.; Kobayashi, H.; Unjoh, S. Experimental and analytical study on RC deep beams. Asian J. Civ. Eng. (Build. Hous.) 2005, 6, 409–421. [Google Scholar]
- Sarsam, K.F.; Al-Musawi, J.M.S. Shear design of high- and normal strength concrete beams with web reinforcement. ACI Struct. J. 1992, 89, 658–664. [Google Scholar] [CrossRef]
- Senturk, A.E.; Higgins, C. Evaluation of reinforced concrete deck girder bridge bent caps with 1950s vintage details: Analytical methods. ACI Struct. J. 2010, 107, 544–553. [Google Scholar] [CrossRef]
- Shin, S.-W.; Lee, K.-S.; Moon, J.-I.; Ghosh, S.K. Shear strength of reinforced high-strength concrete beams with shear span-to-depth ratios between 1.5 and 2.5. ACI Struct. J. 1999, 96, 549–556. [Google Scholar] [CrossRef]
- Shuraim, A.B.; El-Sayed, A.K. Experimental verification of strut and tie model for HSC deep beams without shear reinforcement. Eng. Struct. 2016, 117, 71–85. [Google Scholar] [CrossRef]
- Smith, K.N.; Vantsiotis, A.S. Shear strength of deep beams. ACI J. Proc. 1982, 79, 201–213. [Google Scholar] [CrossRef]
- Subedi, N.K.; Vardy, A.E.; Kubotat, N. Reinforced concrete deep beams some test results. Mag. Concr. Res. 1986, 38, 206–219. [Google Scholar] [CrossRef]
- Tan, K.H.; Cheng, G.H.; Cheong, H.K. Size effect in shear strength of large beams—Behaviour and finite element modelling. Mag. Concr. Res. 2005, 57, 497–509. [Google Scholar] [CrossRef]
- Tan, K.H.; Lu, H.Y. Shear behavior of large reinforced concrete deep beams and code comparisons. ACI Struct. J. 1999, 96, 836–846. [Google Scholar] [CrossRef]
- Tan, K.-H.; Cheng, G.-H.; Zhang, N. Experiment to mitigate size effect on deep beams. Mag. Concr. Res. 2008, 60, 709–723. [Google Scholar] [CrossRef]
- Tan, K.-H.; Kong, F.-K.; Teng, S.; Guan, L. High-strength concrete deep beams with effective span and shear span variations. ACI Struct. J. 1995, 92, 395–405. [Google Scholar] [CrossRef]
- Tan, K.-H.; Kong, F.-K.; Teng, S.; Weng, L.-W. Effect of web reinforcement on high-strength concrete deep beams. ACI Struct. J. 1997, 94, 572–582. [Google Scholar] [CrossRef]
- Tan, K.-H.; Teng, S.; Kong, F.-K.; Lu, H.-Y. Main tension steel in high strength concrete deep and short beams. ACI Struct. J. 1997, 94, 752–768. [Google Scholar] [CrossRef]
- Tanimura, Y.; Sato, T. Evaluation of shear strength of deep beams with stirrups. Q. Rep. RTRI 2005, 46, 53–58. [Google Scholar] [CrossRef]
- Tuchscherer, R.; Kettelkamp, J. Estimating the service-level cracking behavior of deep beams. ACI Struct. J. 2018, 115, 875–883. [Google Scholar] [CrossRef]
- Walravena, J.; Lehwalter, N. Size effects in short beams loaded in shear. ACI Struct. J. 1994, 91, 585–593. [Google Scholar] [CrossRef]
- Watstein, D.; Mathey, R.G. Strains in beams having diagonal cracks. ACI J. Proc. 1958, 55, 717–728. [Google Scholar] [CrossRef]
- Wei, H.; Wu, T.; Sun, L.; Liu, X. Evaluation of cracking and serviceability performance of lightweight aggregate concrete deep beams. KSCE J. Civ. Eng. 2020, 24, 3342–3355. [Google Scholar] [CrossRef]
- Yang, K.-H.; Chung, H.-S.; Lee, E.-T.; Eun, H.-C. Shear characteristics of high-strength concrete deep beams without shear reinforcements. Eng. Struct. 2003, 25, 1343–1352. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Li, S.-S.; Xie, W.; Guo, Y.-D. Experimental study on shear capacity of high strength reinforcement concrete deep beams with small shear span–depth ratio. Materials 2020, 13, 1218. [Google Scholar] [CrossRef]
- Zhang, N.; Tan, K.-H. Size effect in RC deep beams: Experimental investigation and STM verification. Eng. Struct. 2007, 29, 3241–3254. [Google Scholar] [CrossRef]
- Zhang, N.; Tan, K.-H.; Leong, C.-L. Single-span deep beams subjected to unsymmetrical loads. J. Struct. Eng. 2009, 135, 239–252. [Google Scholar] [CrossRef]
- Xu, J.-G.; Chen, S.-Z.; Xu, W.-J.; Shen, Z.-S. Concrete-to-concrete interface shear strength prediction based on explainable extreme gradient boosting approach. Constr. Build. Mater. 2021, 308, 125088. [Google Scholar] [CrossRef]
- Ye, M.; Li, L.; Yoo, D.-Y.; Li, H.; Zhou, C.; Shao, X. Prediction of shear strength in UHPC beams using machine learning-based models and SHAP interpretation. Constr. Build. Mater. 2023, 408, 133752. [Google Scholar] [CrossRef]
- Rahman, J.; Ahmed, K.S.; Khan, N.I.; Islam, K.; Mangalathu, S. Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach. Eng. Struct. 2021, 233, 111743. [Google Scholar] [CrossRef]
- Thai, H.-T. Machine learning for structural engineering: A state-of-the-art review. Structures 2022, 38, 448–491. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Machine Learning 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Dahesh, A.; Tavakkoli-Moghaddam, R.; Wassan, N.; Tajally, A.; Daneshi, Z.; Erfani-Jazi, A. A hybrid machine learning model based on ensemble methods for devices fault prediction in the wood industry. Expert Syst. Appl. 2024, 249, 123820. [Google Scholar] [CrossRef]
- Wakjira, T.G.; Al-Hamrani, A.; Ebead, U.; Alnahhal, W. Shear capacity prediction of FRP-RC beams using single and ensenble ExPlainable Machine learning models. Compos. Struct. 2022, 287, 115381. [Google Scholar] [CrossRef]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; pp. 6639–6649. [Google Scholar]
- Pal, A.; Ahmed, K.S.; Mangalathu, S. Data-driven machine learning approaches for predicting slump of fiber-reinforced concrete containing waste rubber and recycled aggregate. Constr. Build. Mater. 2024, 417, 135369. [Google Scholar] [CrossRef]
- Alsulamy, S. Predicting construction delay risks in Saudi Arabian projects: A comparative analysis of CatBoost, XGBoost, and LGBM. Expert Syst. Appl. 2025, 268, 126268. [Google Scholar] [CrossRef]
- de-Prado-Gil, J.; Palencia, C.; Silva-Monteiro, N.; Martínez-García, R. To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models. Case Stud. Constr. Mater. 2022, 16, e01046. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Liu, T.; Cakiroglu, C.; Islam, K.; Wang, Z.; Nehdi, M.L. Explainable machine learning model for predicting punching shear strength of FRC flat slabs. Eng. Struct. 2024, 301, 117276. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Chen, S.-Z.; Jiang, X.; Han, W.-S. Data-driven prediction of FRP strengthened reinforced concrete beam capacity based on interpretable ensemble learning algorithms. Structures 2022, 43, 860–877. [Google Scholar] [CrossRef]
- Kashem, A.; Karim, R.; Malo, S.C.; Das, P.; Datta, S.D.; Alharthai, M. Hybrid data-driven approaches to predicting the compressive strength of ultra-high-performance concrete using SHAP and PDP analyses. Case Stud. Constr. Mater. 2024, 20, e02991. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Wang, Y. Toward intelligent construction: Prediction of mechanical properties of manufactured-sand concrete using tree-based models. J. Clean. Prod. 2020, 258, 120665. [Google Scholar] [CrossRef]
- Abbas, Y.M.; Albidah, A.S. Enhanced data-driven shear strength prediction for RC deep beams: Analyzing key influencing factors and model performance. Structures 2024, 70, 107651. [Google Scholar] [CrossRef]
- ACI 318-19; Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute (ACI): Farmington Hills, MI, USA, 2019; p. 624.
- CSA A23.3:19; Design of Concrete Structures, 17th ed. Canadian Standards Association: Toronto, ON, Canada, 2019; p. 301.
- EN 1992-1-1; Eurocode 2 Design of Concrete Structures–Part 1-1: General Rules and Rules for Buildings. British Standard Institution (BSI): London, UK, 2015; p. 230.
Category | Feature | Type | Unit | Min | Max | Mean | SD | Skew | Kurtosis |
---|---|---|---|---|---|---|---|---|---|
Concrete property | Input | MPa | 11.30 | 120.10 | 41.67 | 21.40 | 0.88 | −0.14 | |
Geometric dimension | Input | mm | 51.00 | 600.00 | 172.89 | 85.24 | 1.45 | 2.58 | |
Input | mm | 300.00 | 6400.00 | 1623.63 | 855.16 | 1.55 | 3.91 | ||
Input | mm | 152.00 | 1829.00 | 522.30 | 252.32 | 1.97 | 5.32 | ||
Input | mm | 102.00 | 2625.00 | 577.50 | 402.52 | 2.36 | 7.04 | ||
Input | mm | 132.00 | 1778.00 | 463.67 | 233.02 | 1.97 | 5.35 | ||
Input | - | 0.91 | 5.85 | 3.24 | 1.17 | 0.20 | −0.49 | ||
Input | - | 0.22 | 2.74 | 1.29 | 0.58 | 0.49 | −0.47 | ||
Longitudinal reinforcement | Input | % | 0.00 | 11.27 | 1.89 | 1.09 | 1.59 | 7.27 | |
Input | MPa | 0.00 | 1330.00 | 455.25 | 150.00 | 1.54 | 7.53 | ||
Horizontal web reinforcement | Input | % | 0.00 | 3.17 | 0.17 | 0.42 | 3.86 | 17.60 | |
Input | mm | 0.00 | 801.00 | 46.57 | 99.87 | 3.11 | 11.62 | ||
Input | MPa | 0.00 | 860.00 | 127.33 | 211.46 | 1.28 | 0.26 | ||
Vertical web reinforcement | Input | % | 0.00 | 2.86 | 0.27 | 0.41 | 2.51 | 8.65 | |
Input | mm | 0.00 | 457.00 | 87.97 | 108.11 | 1.12 | 0.33 | ||
Input | MPa | 0.00 | 1051.00 | 224.69 | 232.69 | 0.47 | −0.65 | ||
Shear strength | Output | kN | 21.00 | 1984.50 | 411.15 | 332.60 | 1.98 | 4.43 |
Algorithm | Hyperparameter | Search Space | Optimal Value |
---|---|---|---|
RF | n_estimators | Integer (100, 1000) | 783 |
max_depth | Integer (10, 50) | 14 | |
max_features | Integer (1, 16) | 8 | |
ET | n_estimators | Integer (100, 1000) | 798 |
max_depth | Integer (10, 50) | 25 | |
max_features | Integer (1, 16) | 15 | |
AB | n_estimators | Integer (10, 60) | 53 |
learning_rate | Real (0.1, 1.0) | 0.87037279320499 | |
CB | iterations | Integer (100, 1300) | 1300 |
learning_rate | Real (0.01, 1.0) | 0.06344784452431354 | |
depth | Integer (6, 7) | 6 | |
l2_leaf_reg | Real (0.0, 1.0) | 1.0 |
Model | Dataset | Metric | |||
---|---|---|---|---|---|
R2 | RMSE (kN) | MAE (kN) | MAPE (%) | ||
RF | Training | 0.9782 | 50.5509 | 29.5371 | 8.1684 |
Validation | 0.8501 | 129.3699 | 76.1972 | 21.2943 | |
Testing | 0.8955 | 93.0718 | 62.6384 | 19.0369 | |
Total | 0.9658 | 61.4556 | 36.1573 | 10.3421 | |
ET | Training | 0.9977 | 16.4073 | 2.4859 | 0.7452 |
Validation | 0.8831 | 114.6653 | 66.3175 | 18.2174 | |
Testing | 0.9034 | 89.4670 | 57.7167 | 16.8640 | |
Total | 0.9836 | 42.6172 | 13.5320 | 3.9690 | |
AB | Training | 0.9931 | 28.3637 | 13.9013 | 9.0994 |
Validation | 0.8605 | 124.2699 | 78.8827 | 24.9258 | |
Testing | 0.9058 | 88.3623 | 58.9152 | 20.5315 | |
Total | 0.9800 | 46.9594 | 22.9041 | 11.3858 | |
CB | Training | 0.9971 | 18.3366 | 8.4077 | 2.9568 |
Validation | 0.9170 | 96.4863 | 56.8127 | 15.0108 | |
Testing | 0.9422 | 69.2136 | 47.1074 | 14.4932 | |
Total | 0.9889 | 35.0298 | 16.1476 | 5.2641 |
Model | Bias | Variance | MSE |
---|---|---|---|
RF | 10,147.7445 | 2497.0147 | 12,644.7592 |
ET | 8881.1901 | 2532.4058 | 11,413.5955 |
AB | 8308.8276 | 5013.4415 | 13,322.2690 |
CB | 6134.7950 | 2407.6251 | 8542.4200 |
Reference | Datapoints | Input Features | Best Model | R2 |
---|---|---|---|---|
Feng et al. [9] | 271 | 16 | XGBoost | 0.928 |
Truong et al. [10] | 320 | 14 | XGBoost | 0.936 |
Ma et al. [11] | 457 | 9 | XGBoost | 0.917 |
Nguyen et al. [12] | 518 | 15 | GPR | 0.937 |
Tiwari et al. [13] | 271 | 16 | XGBoost | 0.928 |
Abbas et al. [99] | 386 | 22 | RF | 0.937 |
This study | 950 | 16 | CatBoost | 0.942 |
Model | Vu, Pred./Vu, Exp. | ||||
---|---|---|---|---|---|
Min | Max | Mean | SD | COV (%) | |
ACI 318 | 0.252 | 7.606 | 1.042 | 0.570 | 54.717 |
CSA A23.3 | 0.133 | 2.873 | 0.763 | 0.353 | 46.176 |
EU2 | 0.234 | 3.784 | 0.886 | 0.419 | 47.339 |
CB | 0.573 | 2.388 | 1.014 | 0.116 | 11.457 |
Model | Vu, Pred./Vu, Exp. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WOR | WHR | WVR | WHVR | |||||||||
Mean | SD | COV (%) | Mean | SD | COV (%) | Mean | SD | COV (%) | Mean | SD | COV (%) | |
ACI 318 | 0.968 | 0.464 | 47.924 | 1.176 | 0.767 | 65.244 | 1.209 | 0.758 | 62.714 | 0.953 | 0.362 | 38.034 |
CSA A23.3 | 0.781 | 0.340 | 43.544 | 0.854 | 0.287 | 33.638 | 0.731 | 0.398 | 54.445 | 0.754 | 0.325 | 43.136 |
EU2 | 0.960 | 0.437 | 45.494 | 0.885 | 0.589 | 66.603 | 0.887 | 0.454 | 51.151 | 0.752 | 0.239 | 31.842 |
CB | 1.024 | 0.145 | 14.135 | 1.023 | 0.120 | 11.688 | 1.005 | 0.094 | 9.369 | 1.004 | 0.071 | 7.090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Institute of Knowledge Innovation and Invention. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbood, I.S.; Rahman, N.A.; Bakar, B.H.A. Shear Strength Prediction for RCDBs Utilizing Data-Driven Machine Learning Approach: Enhanced CatBoost with SHAP and PDPs Analyses. Appl. Syst. Innov. 2025, 8, 96. https://doi.org/10.3390/asi8040096
Abbood IS, Rahman NA, Bakar BHA. Shear Strength Prediction for RCDBs Utilizing Data-Driven Machine Learning Approach: Enhanced CatBoost with SHAP and PDPs Analyses. Applied System Innovation. 2025; 8(4):96. https://doi.org/10.3390/asi8040096
Chicago/Turabian StyleAbbood, Imad Shakir, Noorhazlinda Abd Rahman, and Badorul Hisham Abu Bakar. 2025. "Shear Strength Prediction for RCDBs Utilizing Data-Driven Machine Learning Approach: Enhanced CatBoost with SHAP and PDPs Analyses" Applied System Innovation 8, no. 4: 96. https://doi.org/10.3390/asi8040096
APA StyleAbbood, I. S., Rahman, N. A., & Bakar, B. H. A. (2025). Shear Strength Prediction for RCDBs Utilizing Data-Driven Machine Learning Approach: Enhanced CatBoost with SHAP and PDPs Analyses. Applied System Innovation, 8(4), 96. https://doi.org/10.3390/asi8040096