Seismic and Structural Analyses of the Eastern Anatolian Region (Turkey) Using Different Probabilities of Exceedance
Abstract
:1. Introduction
2. Materials and Methods
Seismicity of the Eastern Anatolia Region
3. Distribution of Seismic Moments in Eastern Anatolia
4. Seismic Hazard Analysis
5. Comparison of Structural Analyses under Different Earthquake Ground Motion Levels
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cornell, C.A. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 1968, 58, 1583–1606. [Google Scholar] [CrossRef]
- Giardini, D.; Grünthal, G.; Shedlock, K.M.; Zhang, P. The GSHAP global seismic hazard map. Ann. Geophys. 1999, 42, 1225–1230. [Google Scholar] [CrossRef]
- Kayabali, K. Modeling of seismic hazard for Turkey using the recent neotectonic data. Eng. Geol. 2002, 63, 221–232. [Google Scholar] [CrossRef]
- Moehle, J.; Deirlein, G.G. A framework methodology for performance-based earthquake engineering. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- McGuire, R.K. Probabilistic seismic hazard analysis: Early history. Earthq. Eng. Struct. Dyn. 2008, 37, 329–338. [Google Scholar] [CrossRef]
- Ozmen, B.; Can, H. Deterministic seismic hazard assessment for Ankara, Turkey. J. Fac. Eng. Archit. Gazi Univ. 2016, 31, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Yakut, A. Preliminary seismic performance assessment procedure for existing RC buildings. Eng. Struct. 2004, 26, 1447–1461. [Google Scholar] [CrossRef]
- Harirchian, E.; Lahmer, T. Improved rapid visual earthquake hazard safety evaluation of existing buildings using a type-2 fuzzy logic model. Appl. Sci. 2020, 10, 2375. [Google Scholar] [CrossRef] [Green Version]
- Işık, E. Consistency of the rapid assessment method for reinforced concrete buildings. Earthq. Struct. 2016, 11, 873–885. [Google Scholar] [CrossRef]
- Hadzima-Nyarko, M.; Pavic, G.; Lesic, M. Seismic vulnerability of older confined masonry buildings in Osijek, Croatia. Earthq. Struct. 2016, 11, 629–648. [Google Scholar] [CrossRef]
- Işık, E.; Işık, M.F.; Bulbul, M.A. Web based evaluation of earthquake damages for reinforced concrete buildings. Earthq. Struct. 2017, 13, 387–396. [Google Scholar] [CrossRef]
- Harirchian, E.; Lahmer, T.; Buddhiraju, S.; Mohammad, K.; Mosavi, A. Earthquake safety assessment of buildings through rapid visual screening. Buildings 2020, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Özmen, B.; Pampal, S. The evolution of earthquake zoning maps in Turkey. In Proceedings of the 4th International Earthquake Engineering and Seismology Conference, Eskişehir, Turkey, 11–13 October 2017. [Google Scholar]
- Işık, E. A comparative study on the structural performance of an RC building based on updated seismic design codes: Case of Turkey. Challenge 2021, 7, 123–134. [Google Scholar] [CrossRef]
- Akkar, S.; Kale, Ö.; Yakut, A.; Ceken, U. Ground-motion characterization for the probabilistic seismic hazard assessment in Turkey. Bull. Earthq. Eng. 2018, 16, 3439–3463. [Google Scholar] [CrossRef]
- Akkar, S.; Azak, T.; Çan, T.; Çeken, U.; Tümsa, M.D.; Duman, T.Y.; Kale, Ö. Evolution of seismic hazard maps in Turkey. Bull. Earthq. Eng. 2018, 16, 3197–3228. [Google Scholar] [CrossRef]
- Buyuksarac, A.; Isik, E.; Harirchian, E. A case study for determination of seismic risk priorities in Van (Eastern Turkey). Earthq. Struct. 2021, 20, 445–455. [Google Scholar] [CrossRef]
- Güler, K.; Celep, Z. On the general requirements for design of earthquake resistant buildings in the Turkish Building Seismic code of 2018. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 737, p. 012015. [Google Scholar]
- Michetti, A.M.; Esposito, E.; Guerrieri, L.; Porfido, S.; Serva, L.; Tatevossian, R.; Vittori, E.; Audemard, F.; Azuma, T.; Clague, J.; et al. Environmental seismic intensity scale-ESI 2007. Mem. Descr. Carta Geol. D’Ital. 2007, 74, 41. [Google Scholar]
- Silva, P.G.; Rodríguez-Pascua, M.A.; Giner Robles, J.L.; Élez, J.; Pérez-López, R.; Davila, M. Catalogue of the geological effects of earthquakes in Spain based on the ESI-07 macroseismic scale: A new database for seismic hazard analysis. Geosciences 2019, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Aydınoğlu, M.N. A response spectrum-based nonlinear assessment tool for practice: Incremental response spectrum analysis (IRSA). ISET J. Earthq. Technol. 2007, 44, 169–192. [Google Scholar]
- Doran, B.; Akbaş, B.; Sayım, I.; Fahjan, Y.; Alacalı, S.N. Uzun periyotlu bir yapıda yapısal sağlık izlemesi ve deprem performansının belirlenmesi. In Proceedings of the Turkey Conference on Earthquake Engineering and Seismology, Ankara, Turkey, 11–14 October 2011. [Google Scholar]
- Fajfar, P. Analysis in seismic provisions for buildings: Past, present and future. Bull. Earthq. Eng. 2018, 16, 2567–2608. [Google Scholar] [CrossRef] [Green Version]
- Midorikawa, M.; Okawa, I.; Iiba, M.; Teshigawara, M. Performance-based seismic design code for buildings in Japan. Earthq. Eng. Eng. Seismol. 2003, 4, 15–25. [Google Scholar]
- Grünthal, G.; Wahlström, R. Sensitivity of parameters for probabilistic seismic hazard analysis using a logic tree approach. J. Earthq. Eng. 2001, 5, 309–328. [Google Scholar] [CrossRef] [Green Version]
- Serva, L.; Vittori, E.; Comerci, V.; Esposito, E.; Guerrieri, L.; Michetti, A.M.; Mohammadioun, B.; Mohammadioun, G.C.; Porfido, S.; Tatevossian, R.E. Earthquake hazard and the Environmental Seismic Intensity (ESI) scale. Pure Appl. Geophys. 2016, 173, 1479–1515. [Google Scholar] [CrossRef]
- Yunatçı, A.A.; Çetin, K.O. Site specific seismic response and soil liquefaction triggering assessment integrated within probabilistic seismic hazard framework. In Proceedings of the 6th National Conference on Earthquake Engineering, Istanbul, Turkey, 6–20 October 2007. [Google Scholar]
- Harman, E.; Küyük, H. Probabilistic seismic hazard analysis for the city of Sakarya. SAU J. Sci. 2016, 20, 23–31. [Google Scholar]
- Işık, E.; Büyüksaraç, A.; Ekinci, Y.L.; Aydın, M.C.; Harirchian, E. The effect of site-specific design spectrum on earthquake-building parameters: A case study from the Marmara region (NW Turkey). Appl. Sci. 2020, 10, 7247. [Google Scholar] [CrossRef]
- Işık, E.; Ekinci, Y.L.; Sayil, N.; Büyüksaraç, A.; Aydın, M.C. Time-dependent model for earthquake occurrence and effects of design spectra on structural performance: A case study from the North Anatolian Fault Zone, Turkey. Turk. J. Earth Sci. 2021, 30, 215–234. [Google Scholar] [CrossRef]
- TBEC-2018. Turkey Building Earthquake Code; Disaster and Emergency Management Presidency of Turkey: Ankara, Turkey, 2018. [Google Scholar]
- Turkish Earthquake Hazard Map Interactive Web Application. Available online: https://tdth.afad.gov.tr (accessed on 2 February 2020).
- Sucuoğlu, H. New improvements in the 2019 Building Earthquake Code of Turkey. Turk. J. Earthq. Res. 2019, 1, 63–75. [Google Scholar]
- Işık, E.; Harirchian, E.; Bilgin, H.; Jadhav, K. The effect of material strength and discontinuity in RC structures according to different site-specific design spectra. Res. Eng. Struct. Mater. 2021, 7, 413–430. [Google Scholar] [CrossRef]
- Aksoylu, C.; Arslan, M.H. Comparative investigation of different earthquake load calculation methods for reinforced concrete buildings in the 2007 and 2019 codes. Int. J. Eng. Res. Devel. 2021, 13, 359–374. [Google Scholar] [CrossRef]
- Keskin, E.; Bozdoğan, K.B. Evaluation of 2007 and 2018 Turkish earthquake code for the province of Kirklareli. Kırklareli Univ. J. Eng. Sci. 2018, 4, 74–90. [Google Scholar]
- Koçer, M.; Nakipoğlu, A.; Öztürk, B.; Al-hagri, M.G.; Arslan, M.H. Comparison of TBSC 2018 and TSC 2007 through the values of seismic load related spectral acceleration. Selçuk-Tek. Derg. 2018, 17, 43–58. [Google Scholar]
- Karaşin, İ.B.; Işık, E.; Demirci, A.; Aydın, M.C. The effect of site-specific design spectra for geographical location on reinforced-concrete structure performance. DUJE 2020, 11, 1319–1330. [Google Scholar] [CrossRef]
- Adar, K.; Büyüksaraç, A.; Işık, E.; Ulu, A.E. Comparison of 2007 and 2018 seismic codes in the scope of structural analysis. Eur. J. Sci. Technol. 2021, 25, 306–317. [Google Scholar] [CrossRef]
- Peker, F.U.; Işık, E. A study on the effect of local soil conditions in TBDY-2018 on earthquake behavior of steel structure. BEU J. Sci. 2021, 10, 1125–1139. [Google Scholar] [CrossRef]
- Nemutlu, Ö.F.; Balun, B.; Benli, A.; Sari, A. Investigation of the change of acceleration spectra in Bingöl and Elazığ provinces according to 2007 and 2018 Turkish Earthquake Codes. DUJE 2020, 11, 1341–1356. [Google Scholar] [CrossRef]
- Ulutaş, H. Comparison of TEC (2007) and TBEC (2018) earthquake codes in terms of section damage limits. Eur. J. Sci. Technol. 2019, 17, 351–359. [Google Scholar] [CrossRef]
- Balun, B.; Nemutlu, O.F.; Benli, A.; Sari, A. Estimation of probabilistic hazard for Bingol province, Turkey. Earthq. Struct. 2020, 18, 223–231. [Google Scholar] [CrossRef]
- Yalın, M.; Ulutaş, H. An evaluation on seismic performance of an existing school building according to the 2007 and 2018 Turkish Seismic Codes. NOHU J. Eng. Sci. 2021, 10, 648–661. [Google Scholar] [CrossRef]
- Yiğitbaş, E.; Elmas, A.; Sefunç, A.; Özer, N. Major neotectonic features of eastern Marmara region, Turkey: Development of the Adapazari-Karasu corridor and its tectonic significance. Geol. J. 2004, 39, 179–198. [Google Scholar] [CrossRef]
- Ekinci, Y.L.; Ertekin, C.; Yiğitbaş, E. On the effectiveness of directional derivative based filters on gravity anomalies for source edge approximation: Synthetic simulations and a case study from the Aegean Graben System (Western Anatolia, Turkey). J. Geophys. Eng. 2013, 10, 035005. [Google Scholar] [CrossRef]
- Ekinci, Y.L.; Yiğitbaş, E. Geophysical approach to the igneous rocks in the Biga Peninsula (NW Turkey) based on airborne magnetic anomalies: Geological implications. Geodin. Acta 2012, 25, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Ekinci, Y.L.; Yiğitbaş, E. Interpretation of gravity anomalies to delineate some structural features of Biga and Gelibolu peninsulas, and their surroundings (north-west Turkey). Geodin. Acta 2015, 27, 300–319. [Google Scholar] [CrossRef] [Green Version]
- CGIAR-CSI GeoPortal. SRTM 90 m Digital Elevation Data. 2012. Available online: http://srtm.csi.cgiar.org (accessed on 10 September 2021).
- Ateş, A.; Bilim, F.; Büyüksaraç, A.; Aydemir, A.; Bektaş, Ö.; Aslan, Y. Crustal structure of Turkey from aeromagnetic, gravity and deep seismic reflection data. Surv. Geophys. 2012, 33, 869–885. [Google Scholar] [CrossRef]
- Aydemir, A.; Ates, A.; Bilim, F.; Büyüksaraç, A.; Bektas, O. Evaluation of gravity and aeromagnetic anomalies for the deep structure and possibility of hydrocarbon potential of the region surrounding Lake Van, Eastern Anatolia, Turkey. Surv. Geophys. 2014, 35, 431–448. [Google Scholar] [CrossRef]
- Barka, A.A.; Kadinsky-Cade, K. Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonics 1988, 7, 663–684. [Google Scholar] [CrossRef]
- Ambraseys, N.N.; Melville, C.P. A History of Persian Earthquakes; 2005, Paperback Edition; Cambridge University Press: Cambridge, UK, 1982; 219p. [Google Scholar]
- Şaroğlu, F.; Güner, Y. Doğu Anadolu’nun jeomorfolojik gelişimine etki eden ögeler: Jeomorfoloji, tektonik, volkanizma ilişkileri. TJK Bülteni 1981, 24, 119–130. [Google Scholar]
- Ambraseys, N.N. Reassessment of earthquakes, 1900–1999, in the Eastern Mediterranean and the Middle East. Geophys. J. Int. 2001, 145, 471–485. [Google Scholar] [CrossRef] [Green Version]
- Çelebi, E.; Aktas, M.; Çağlar, N.; Özocak, A.; Kutanis, M.; Mert, N.; Özcan, Z. 23 October 2011 Turkey/Van–Ercis earthquake: Structural damages in the residential buildings. Nat. Hazards 2013, 65, 2287–2310. [Google Scholar] [CrossRef]
- DEMP. 2020. Available online: https://deprem.afad.gov.tr/tarihseldepremler (accessed on 2 April 2020).
- Utkucu, M.; Durmus, H.; Yalçin, H.; Budakoglu, E.; Isik, E. Coulomb static stress changes before and after the 23 October 2011 Van, Eastern Turkey, earthquake (Mw = 7.1): Implications for the earthquake hazard mitigation. Nat. Hazard Earth Syst. 2013, 13, 1889. [Google Scholar] [CrossRef] [Green Version]
- Isik, E.; Aydin, M.C.; Buyuksarac, A. 24 January 2020 Sivrice (Elazığ) earthquake damages and determination of earthquake parameters in the region. Earthq. Struct. 2020, 19, 145–156. [Google Scholar] [CrossRef]
- Ambraseys, N.; Zatopek, A. The Varto-Üstükran (E. Anatolia) Earthquake of 19 August 1966, a Field Report; Unesco: Paris, France, 1968; 68p. [Google Scholar]
- Guidoboni, E.; Traina, G. A new catalogue of earthquakes in the historical Armenian area from antiquity to the 12th century. Anal. Geofis. 1995, 38, 112–147. [Google Scholar] [CrossRef]
- Tan, O.; Tapirdamaz, M.C.; Yörük, A. The earthquake catalogues for Turkey. Turk. J. Earth Sci. 2008, 17, 405–418. [Google Scholar]
- Utkucu, M. 23 October 2011 Van, Eastern Anatolia, earthquake (M w 7.1) and seismotectonics of Lake Van area. J. Seismol. 2013, 17, 783–805. [Google Scholar] [CrossRef]
- KOERI. 2020. Available online: http://www.koeri.boun.edu.tr/sismo/2/deprem-bilgileri/buyuk-depremler/ (accessed on 2 April 2020).
- Aki, K. Generation and Propagation of G Waves from the Niigata Earthquake of 16 June 1964, 2, Estimation of Earthquake Moment, Released Energy, and Stress-Strain Drop from G Wave Spectrum; Earthquake Research Institute, The University of Tokyo: Tokyo, Japan, 1966; pp. 73–88. [Google Scholar]
- Das, R.; Sharma, M.L.; Wason, H.R.; Choudhury, D.; Gonzalez, G. A seismic moment magnitude scale. Bull. Seismol. Soc. Am. 2019, 109, 1542–1555. [Google Scholar] [CrossRef]
- Bormann, P.; Giacomo, D.D. The moment magnitude Mw and the energy magnitude Me common roots and differences. J. Seismol. 2010, 15, 411–427. [Google Scholar] [CrossRef]
- Kostrov, V.V. Seismic moment and energy of earthquakes, and seismic flow of rock. Izv. Acad. Sri. USSR Phys. Solid Earth 1974, 1, 2344. [Google Scholar]
- Hanks, T.; Kanamori, H. A moment magnitude scale. J. Geophys. Res. 1979, 84, 2348–2350. [Google Scholar] [CrossRef]
- Bazzurro, P.; Cornell, C.A. Seismic hazard analysis of nonlinear structures. I: Methodology. J. Struct. Eng. 1994, 120, 3320–3344. [Google Scholar] [CrossRef]
- Işık, E.; Kutanis, M.; Bal, İ.E. Displacement of the buildings according to site-specific earthquake spectra. Period. Polytech-Civ. 2016, 60, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Işık, E.; Kutanis, M. Determination of local site-specific spectra using probabilistic seismic hazard analysis for Bitlis Province, Turkey. Earth Sci. Res. J. 2015, 19, 129–134. [Google Scholar] [CrossRef]
- Kutanis, M.; Ulutaş, H.; Işık, E. PSHA of Van province for performance assessment using spectrally matched strong ground motion records. J. Earth Sys. Sci. 2018, 127, 99. [Google Scholar] [CrossRef] [Green Version]
- Pitilakis, K.; Riga, E.; Anastasiadis, A. Design spectra and amplification factors for Eurocode 8. Bull. Earthq. Eng. 2012, 10, 1377–1400. [Google Scholar] [CrossRef]
- Andreotti, G.; Calvi, G.M. Nonlinear soil effects on observed and simulated response spectra. Earthq. Eng. Struct. Dyn. 2021, 50, 3831–3854. [Google Scholar] [CrossRef]
- Andreotti, G.; Famà, A.; Lai, C.G. Hazard-dependent soil factors for site-specific elastic acceleration response spectra of Italian and European seismic building codes. Bull. Earthq. Eng. 2018, 16, 5769–5800. [Google Scholar] [CrossRef]
- Stewart, J.P.; Afshari, K.; Goulet, C.A. Non-ergodic site response in seismic hazard analysis. Earthq. Spectra 2017, 33, 1385–1414. [Google Scholar] [CrossRef]
- Abrahamson, N.A.; Silva, W.J. Empirical response spectral attenuation relations for shallow crustal earthquakes. Seismol. Res. Lett. 1997, 68, 94–127. [Google Scholar] [CrossRef] [Green Version]
- Boore, D.M.; Joyner, W.B.; Fumal, T.E. Equations for estimating horizontal response spectra and peak acceleration from Western North American earthquakes: A summary of recent work. Seis. Res. Lett. 1997, 68, 128–153. [Google Scholar] [CrossRef]
- Campbell, K.W.; Bozorgnia, Y. Updated near-source ground-motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra. Bull. Seismol. Soc. Am. 2003, 93, 314–331. [Google Scholar] [CrossRef]
- Graizer, V.; Kalkan, E. Ground motion attenuation model for peak horizontal acceleration from shallow crustal earthquakes. Earthq. Spectra 2007, 23, 585–613. [Google Scholar] [CrossRef]
- Ambraseys, N.N.; Douglas, J.; Sarma, S.K.; Smit, P.M. Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: Horizontal peak ground acceleration and spectral acceleration. Bull. Earthq. Eng. 2005, 3, 1–53. [Google Scholar] [CrossRef] [Green Version]
- Idriss, I.M. An NGA Empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthq. Spectra 2008, 24, 217–242. [Google Scholar] [CrossRef]
- Seismosoft. SeismoStruct 2018—A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures. 2018. Available online: http://www.seismosoft.com (accessed on 20 May 2021).
- Antoniou, S.; Pinho, R. Advantages and limitations of adaptive and non-adaptive force-based pushover procedures. J. Earthq. Eng. 2004, 8, 497–522. [Google Scholar] [CrossRef]
- Antoniou, S.; Pinho, R. Development and verification of a displacement-based adaptive pushover procedure. J. Earthq. Eng. 2004, 8, 643–661. [Google Scholar] [CrossRef]
- Kutanis, M. Statik itme analizi yöntemlerinin performanslarının değerlendirilmesi. In Proceedings of the Yapısal Onarım ve Güçlendirme Sempozyumu, YOGS2006 Bildiriler Kitabı, Denizli, Turkey, 7–8 August 2006; pp. 205–210. [Google Scholar]
- Pinho, R.; Antoniou, S. A displacement-based adaptive pushover algorithm for assessment of vertically irregular frames. In Proceedings of the Fourth European Workshop on the Seismic Behaviour of Irregular and Complex Structures, Thessaloniki, Greece, 26–27 August 2005. [Google Scholar]
- Elnashai, A.S. Advanced inelastic static (pushover) analysis for earthquake applications. Struct. Eng. Mech. 2001, 12, 51–70. [Google Scholar] [CrossRef]
- Mander, J.B.; Priestley, M.J.N.; Park, R. Theoretical stress-strain model for confined concrete. J. Struct. Eng. 1998, 114, 1804–1825. [Google Scholar] [CrossRef] [Green Version]
- Menegotto, M.; Pinto, P.E. Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. Symposium on the resistance and ultimate deformability of structures acted on by well-defined repeated loads. In Proceedings of the International Association for Bridge and Structural Engineering, Zurich, Switzerland, 2–5 September 1973; pp. 15–22. [Google Scholar]
- Antoniou, S.; Pinho, R. Seismostruct–Seismic Analysis Program by Seismosoft; Technical Manual and User Manual; Seismosoft: Pavia, Italy, 2003. [Google Scholar]
- CEN. Eurocode 8: Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings; EN 1998-3:2005; European Committee for Standardization: Brussels, Belgium, 2005. [Google Scholar]
- Pinto, P.E.; Franchin, P. Eurocode 8-Part 3: Assessment and Retrofitting of Buildings. In Proceedings of the Eurocode 8 Background and Applications, Dissemination of Information for Training, Lisbon, Portugal, 10–11 February 2011. [Google Scholar]
- Kutanis, M.; Boru, E.O.; Işık, E. Alternative instrumentation schemes for the structural identification of the reinforced concrete field test structure by ambient vibration measurements. KSCE J. Civ. Eng. 2017, 21, 1793–1801. [Google Scholar] [CrossRef]
- Aksoylu, C.; Mobark, A.; Arslan, M.H.; Erkan, İ.H. A comparative study on ASCE 7-16, TBEC-2018 and TEC-2007 for reinforced concrete buildings. Rev. Construcción 2020, 19, 282–305. [Google Scholar] [CrossRef]
No | Date | Region | Intensity (MMI) (Io) | No | Date | Region | Intensity (MMI) (Io) | No | Date | Region | Intensity (MMI) (Io) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 240 | Kayseri-Malatya | IX | 13 | 1374 | Erzincan | VIII | 25 | 1790 | Erzurum | VIII |
2 | 771 | Fırat Basin | VIII | 14 | 1422 | Erzincan | VIII | 26 | 1852 | Erzurum | IX |
3 | 802 | Fırat Basin | VIII | 15 | 1441 | Van-Bitlis | VIII | 27 | 1859 | Erzurum | IX |
4 | 995 | Palu-Sivrice | VI | 16 | 1458 | Erzincan | IX | 28 | 1866 | Erzurum | VIII |
5 | 1011 | Erzurum | VIII | 17 | 1482 | Erzincan | IX | 29 | 1868 | Erzurum | IX |
6 | 1045 | Erzincan | IX | 18 | 1584 | Erzincan | IX | 30 | 1871 | Ağrı | VIII |
7 | 1111 | Van-Ahlat | IX | 19 | 1647 | Van-Bitlis | IX | 31 | 1874 | Elazığ | IX |
8 | 1245 | Ahlat-Van | VIII | 20 | 1696 | Çaldıran-Bitlis | X | 32 | 1875 | Erzurum | IX |
9 | 1268 | Erzincan | IX | 21 | 1701 | Van | VIII | 33 | 1881 | Van-Bitlis | IX |
10 | 1276 | Ahlat-Van | VIII | 22 | 1715 | Van -Erçiş | VIII | 34 | 1890 | Erzincan | IX |
11 | 1319 | Ağrı | VIII | 23 | 1784 | Erzincan | VIII | 35 | 1891 | Muş-Bitlis | VIII |
12 | 1363 | Muş | IX | 24 | 1789 | Elazığ | VIII | 36 | 1893 | Malatya | IX |
No | Date | Region | MMI Io | Mw | Loss of Life | Damaged Buildings | No | Date | Region | MMI Io | Mw | Loss of Life | Damaged Buildings |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1901 | Erzurum | VIII | 6.1 | 500 | 10,000 | 26 | 1988 | Kars | X | 6.9 | 4 | 546 |
2 | 1903 | Muş | IX | 6.7 | 600 | 450 | 27 | 1992 | Erzincan | VIII | 6.8 | 653 | 8057 |
3 | 1905 | Malatya | IX | 6.8 | 500 | 5000 | 28 | 1992 | Tunceli | VII | 5.8 | 439 | |
4 | 1906 | Kars | 6.2 | 29 | 1995 | Tunceli | VI+ | 5.7 | 1 | ||||
5 | 1908 | Van | 6.3 | 30 | 1998 | Bingöl | VI | 5 | 148 | ||||
6 | 1924 | Erzurum | IX | 6.8 | 60 | 380 | 31 | 2003 | Tunceli | VII | 6.2 | 1 | 50 |
7 | 1926 | Kars | VIII | 5.9 | 3 | 2043 | 32 | 2003 | Bingöl | VIII | 6.4 | 176 | 6000 |
8 | 1930 | Hakkari | X | 7.2 | 2514 | 3000 | 33 | 2004 | Erzurum | VII | 5.6 | 9 | 1280 |
9 | 1939 | Erzincan | VII | 5.9 | 43 | 500 | 34 | 2004 | Ağrı | VII | 5.1 | 17 | 1000 |
10 | 1939 | Erzincan | X-IX | 7.9 | 32,968 | 116,720 | 35 | 2004 | Elazığ | VII | 5.9 | ||
11 | 1941 | Van | VIII | 5.9 | 192 | 600 | 36 | 2005 | Hakkari | VII | 5.9 | 3 | 82 |
12 | 1941 | Erzincan | VIII | 5.9 | 15 | 600 | 37 | 2005 | Bingöl | VI | 5.7 | ||
13 | 1946 | Muş | VIII | 5.9 | 839 | 3000 | 38 | 2005 | Bingöl | VII | 5.9 | 760 | |
14 | 1949 | Bingöl | IX | 6.7 | 450 | 3500 | 39 | 2005 | Bingöl | VI | 5.7 | ||
15 | 1952 | Erzurum | VIII | 5.8 | 41 | 701 | 40 | 2005 | Bingöl | VI | 5.7 | ||
16 | 1964 | Malatya | VIII | 6 | 8 | 847 | 41 | 2007 | Elazığ | VI | 5.5 | ||
17 | 1966 | Muş | VIII | 5.6 | 14 | 1100 | 42 | 2007 | Elazığ | VII | 5.9 | ||
18 | 1966 | Muş | IX | 6.9 | 2396 | 20,007 | 43 | 2010 | Elazığ | VII | 6.1 | 42 | |
19 | 1967 | Tunceli | VIII | 5.9 | 97 | 1282 | 44 | 2010 | Elazığ | VI | 5.6 | ||
20 | 1971 | Bingöl | VIII | 6.8 | 878 | 9111 | 45 | 2011 | Erzincan | VI | 5.6 | ||
21 | 1976 | Van | IX | 7.5 | 3840 | 9232 | 46 | 2011 | Van | VIII | 7.2 | 644 | 17,005 |
22 | 1983 | Erzurum | VIII | 6.9 | 1155 | 3241 | 47 | 2011 | Van | VI | 5.6 | ||
23 | 1984 | Erzurum | VIII | 6.4 | 3 | 570 | 48 | 2011 | Van | VI | 5.6 | 40 | |
24 | 1986 | Malatya | VIII | 5.9 | 7 | 824 | 49 | 2020 | Elazığ | 6.8 | 41 | 3300 | |
25 | 1986 | Malatya | VIII | 5.6 | 1 | 1174 | 50 | 2020 | Van | 6.0 | 9 |
Earthquake Level | Repetition Period (Year) | Probability of Exceedance (in 50 Years) | Description |
---|---|---|---|
DD-1 | 2475 | 0.02 | Largest earthquake ground motion |
DD-2 | 475 | 0.10 | Standard design earthquake ground motion |
DD-3 | 72 | 0.50 | Frequent earthquake ground motion |
DD-4 | 43 | 0.68 | Service earthquake movement |
Province | PGA (g) | PGV (ms−2) | ||||||
---|---|---|---|---|---|---|---|---|
Probability of Exceedance in 50 Years | Probability of Exceedance in 50 Years | |||||||
2% | 10% | 50% | 68% | 2% | 10% | 50% | 68% | |
Ağrı | 0.451 | 0.234 | 0.091 | 0.066 | 25.925 | 13.640 | 5.798 | 4.313 |
Ardahan | 0.520 | 0.269 | 0.098 | 0.068 | 29.926 | 14.694 | 5.608 | 4.114 |
Bingöl | 1.136 | 0.654 | 0.275 | 0.179 | 77.511 | 43.563 | 15.636 | 9.588 |
Bitlis | 0.490 | 0.260 | 0.106 | 0.077 | 28.200 | 15.065 | 6.506 | 4.847 |
Elazığ | 0.717 | 0.386 | 0.179 | 0.100 | 46.493 | 24.215 | 9.026 | 5.903 |
Erzincan | 1.092 | 0.597 | 0.216 | 0.147 | 74.271 | 39.230 | 12.859 | 8.353 |
Erzurum | 0.877 | 0.477 | 0.152 | 0.098 | 54.049 | 28.780 | 9.455 | 6.033 |
Hakkari | 0.600 | 0.318 | 0.116 | 0.079 | 34.001 | 16.676 | 5.977 | 4.209 |
Iğdır | 0.481 | 0.245 | 0.089 | 0.062 | 27.052 | 13.269 | 5.414 | 3.923 |
Kars | 0.379 | 0.195 | 0.076 | 0.055 | 21.765 | 11.442 | 4.900 | 3.75 |
Malatya | 0.654 | 0.348 | 0.136 | 0.092 | 41.267 | 21.446 | 8.054 | 5.365 |
Muş | 0.579 | 0.327 | 0.138 | 0.098 | 35.589 | 20.461 | 8.609 | 5.989 |
Tunceli | 0.672 | 0.348 | 0.128 | 0.087 | 42.198 | 21.992 | 8.393 | 5.685 |
Van | 0.516 | 0.271 | 0.100 | 0.069 | 29.756 | 15.224 | 5.941 | 4.303 |
Province | Short Period Map Spectral Acceleration Coefficient (SS) | Map Spectral Acceleration Coefficient for the Period of 1.0 Seconds (S1) | ||||||
---|---|---|---|---|---|---|---|---|
Probability of Exceedance in 50 Years | Probability of Exceedance in 50 Years | |||||||
2% | 10% | 50% | 68% | 2% | 10% | 50% | 68% | |
Ağrı | 1.084 | 0.549 | 0.210 | 0.151 | 0.279 | 0.152 | 0.065 | 0.049 |
Ardahan | 1.249 | 0.624 | 0.222 | 0.155 | 0.308 | 0.153 | 0.060 | 0.044 |
Bingöl | 2.873 | 1.606 | 0.644 | 0.423 | 0.802 | 0.421 | 0.155 | 0.095 |
Bitlis | 1.192 | 0.613 | 0.243 | 0.176 | 0.311 | 0.172 | 0.076 | 0.055 |
Elazığ | 1.747 | 0.920 | 0.346 | 0.230 | 0.502 | 0.260 | 0.098 | 0.064 |
Erzincan | 2.709 | 1.434 | 0.497 | 0.333 | 0.832 | 0.413 | 0.133 | 0.085 |
Erzurum | 2.181 | 1.134 | 0.350 | 0.226 | 0.564 | 0.294 | 0.102 | 0.066 |
Hakkari | 1.484 | 0.749 | 0.268 | 0.183 | 0.362 | 0.180 | 0.066 | 0.046 |
Iğdır | 1.157 | 0.571 | 0.206 | 0.144 | 0.280 | 0.147 | 0.060 | 0.043 |
Kars | 0.895 | 0.449 | 0.171 | 0.123 | 0.238 | 0.129 | 0.056 | 0.042 |
Malatya | 1.594 | 0.830 | 0.314 | 0.213 | 0.440 | 0.229 | 0.085 | 0.056 |
Muş | 1.449 | 0.794 | 0.320 | 0.226 | 0.402 | 0.230 | 0.098 | 0.066 |
Tunceli | 1.640 | 0.827 | 0.298 | 0.203 | 0.454 | 0.240 | 0.095 | 0.064 |
Van | 1.267 | 0.639 | 0.227 | 0.159 | 0.312 | 0.163 | 0.066 | 0.048 |
DD-2 | ZA | ZE | All Ground Types | |||
---|---|---|---|---|---|---|
Settlements | TBEC-2018 | TBEC-2018 | TSDC-2007 | |||
SDS | 0.40SDS | SDS | 0.40SDS | SDS | 0.40SDS | |
Ağrı | 0.439 | 0.176 | 0.890 | 0.356 | 0.75 | 0.3 |
Ardahan | 0.499 | 0.200 | 0.937 | 0.3748 | 0.75 | 0.3 |
Bingöl | 1.285 | 0.514 | 1.285 | 0.514 | 1 | 0.4 |
Bitlis | 0.490 | 0.196 | 0.931 | 0.3724 | 1 | 0.4 |
Elazığ | 0.736 | 0.294 | 1.071 | 0.4284 | 0.75 | 0.3 |
Erzincan | 1.147 | 0.459 | 1.185 | 0.474 | 1 | 0.4 |
Erzurum | 0.907 | 0.363 | 1.126 | 0.4504 | 0.75 | 0.3 |
Hakkari | 0.599 | 0.240 | 0.975 | 0.39 | 1 | 0.4 |
Iğdır | 0.457 | 0.183 | 0.906 | 0.3624 | 0.75 | 0.3 |
Kars | 0.359 | 0.144 | 0.827 | 0.3308 | 0.75 | 0.3 |
Malatya | 0.664 | 0.266 | 1.026 | 0.4104 | 1 | 0.4 |
Muş | 0.635 | 0.254 | 1.004 | 0.4016 | 1 | 0.4 |
Tunceli | 0.662 | 0.265 | 1.024 | 0.4096 | 0.75 | 0.3 |
Van | 0.511 | 0.204 | 0.944 | 0.3776 | 0.75 | 0.3 |
Local Soil Class | Soil Type | Upper Average at 30 m | ||
---|---|---|---|---|
(VS)30 (m/s) | (N60)30 (Pulse/30 cm) | (cu)30 (kPa) | ||
ZC | Very tight sand, gravel, and hard clay layers or weathered, very cracked weak rocks | 360–760 | 50 | 250 |
Local Soil Class | Local Ground Effect Coefficients (Fs) for ZC Class | |||||
---|---|---|---|---|---|---|
SS ≤ 0.25 | SS = 0.50 | SS = 0.75 | SS = 1.00 | SS = 1.25 | SS ≥ 1.50 | |
ZC | 1.30 | 1.30 | 1.20 | 1.20 | 1.20 | 1.20 |
Local Soil Class | Local Ground Effect Coefficients (F1) for 1.0 s Period | |||||
---|---|---|---|---|---|---|
S1 ≤ 0.10 | S1 = 0.20 | S1 = 0.30 | S1 = 0.40 | S1 = 0.50 | S1 ≥ 0.60 | |
ZC | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.40 |
Limit State | Description | Return Period (Year) | Probability of Exceedance (in 50 Years) |
---|---|---|---|
Limit state of damage limitation (DL) | Only lightly damaged, damage to non-structural components economically repairable | 225 | 0.20 |
Limit state of significant damage (SD) | Significantly damaged, some residual strength and stiffness, non-structural components damaged, uneconomic to repair | 475 | 0.10 |
Limit state of near collapse (NC) | Heavily damaged, very low residual strength and stiffness, large permanent drift but still standing | 2475 | 0.02 |
Provinces | Code | Target Displacements (m) | ||
---|---|---|---|---|
DL | SD | NC | ||
Ağrı | TBEC-2018 | 0.106 | 0.137 | 0.237 |
Ardahan | 0.122 | 0.157 | 0.272 | |
Bingöl | 0.298 | 0.382 | 0.662 | |
Bitlis | 0.118 | 0.152 | 0.263 | |
Elazığ | 0.176 | 0.225 | 0.390 | |
Erzincan | 0.270 | 0.347 | 0.601 | |
Erzurum | 0.217 | 0.278 | 0.482 | |
Hakkari | 0.145 | 0.186 | 0.322 | |
Iğdır | 0.111 | 0.143 | 0.248 | |
Kars | 0.089 | 0.114 | 0.197 | |
Malatya | 0.158 | 0.203 | 0.352 | |
Muş | 0.149 | 0.191 | 0.331 | |
Tunceli | 0.158 | 0.203 | 0.352 | |
Van | 0.123 | 0.158 | 0.274 | |
Bingöl, Bitlis, Erzincan, Hakkari, Malatya, Muş | TSDC-2007 | 0.182 | 0.233 | 0.405 |
Ağrı, Ardahan, Elazığ, Erzurum, Iğdır, Kars, Tunceli, Van | TSDC-2007 | 0.136 | 0.175 | 0.303 |
Earthquake Ground Motion Level | Base Shear | Displacement | K_elas | K-eff | DL | SD | NC |
---|---|---|---|---|---|---|---|
(kN) | (m) | (kN)/m | (kN/m) | (m) | (m) | (m) | |
DD-1 | 9197.2 | 0.1194 | 162,100.6 | 77,045.55 | 0.518 | 0.664 | 1.152 |
0.2438 | |||||||
1.152 | |||||||
DD-2 | 9193.25 | 0.119 | 162,100.6 | 77,224.23 | 0.298 | 0.382 | 0.662 |
0.2436 | |||||||
0.6624 | |||||||
DD-3 | 9183.68 | 0.1191 | 162,100.6 | 77,325.8 | 0.125 | 0.161 | 0.278 |
0.2519 | |||||||
0.4229 | |||||||
DD-4 | 9174.91 | 0.1187 | 162,100.6 | 77,078.87 | 0.082 | 0.104 | 0.181 |
0.2554 | |||||||
0.4221 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Işık, E.; Harirchian, E.; Büyüksaraç, A.; Levent Ekinci, Y. Seismic and Structural Analyses of the Eastern Anatolian Region (Turkey) Using Different Probabilities of Exceedance. Appl. Syst. Innov. 2021, 4, 89. https://doi.org/10.3390/asi4040089
Işık E, Harirchian E, Büyüksaraç A, Levent Ekinci Y. Seismic and Structural Analyses of the Eastern Anatolian Region (Turkey) Using Different Probabilities of Exceedance. Applied System Innovation. 2021; 4(4):89. https://doi.org/10.3390/asi4040089
Chicago/Turabian StyleIşık, Ercan, Ehsan Harirchian, Aydın Büyüksaraç, and Yunus Levent Ekinci. 2021. "Seismic and Structural Analyses of the Eastern Anatolian Region (Turkey) Using Different Probabilities of Exceedance" Applied System Innovation 4, no. 4: 89. https://doi.org/10.3390/asi4040089
APA StyleIşık, E., Harirchian, E., Büyüksaraç, A., & Levent Ekinci, Y. (2021). Seismic and Structural Analyses of the Eastern Anatolian Region (Turkey) Using Different Probabilities of Exceedance. Applied System Innovation, 4(4), 89. https://doi.org/10.3390/asi4040089