Analysis of GNSS Data for Earthquake Precursor Studies Using IONOLAB-TEC in the Himalayan Region
Abstract
:1. Introduction
2. Study Area
3. Data and Method
3.1. Data Used
3.2. IONOLAB-TEC
3.3. Method of Analysis of TEC Data
4. Results
4.1. 2015 Nepal Earthquake
4.2. 2016 Imphal Earthquake
4.3. 2020 Myanmar Earthquake
4.4. 2020 Nepal Earthquake
4.5. 2020 Manipur Earthquake
5. Discussion
5.1. Compatibility of IONOLAB-TEC
5.2. Accuracy of the Ionospheric Perturbation as an Earthquake Precursor
5.3. TEC Variation with Respect to the Epicentral Distance
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tributsch, H. When the Snakes Awake: Animals and Earthquake Prediction. 1982. Available online: https://www.osti.gov/biblio/5345152 (accessed on 5 January 2023).
- Rikitake, T. The Science of Macro-Anomaly Precursory to an Earthquake; Kinmiraisha: Nagoya, Japan, 1998. [Google Scholar]
- Kirschvink, J.L. Earthquake Prediction by Animals: Evolution and Sensory Perception. Bull. Seismol. Soc. Am. 2000, 90, 312–323. [Google Scholar] [CrossRef]
- Bhargava, N.; Katiyar, V.K.; Sharma, M.L.; Pradhan, P. Earthquake Prediction through Animal Behavior: A Review. Indian J. Biomech. 2009, 78, 159–165. [Google Scholar]
- Cicerone, R.D.; Ebel, J.E.; Britton, J. A Systematic Compilation of Earthquake Precursors. Tectonophysics 2009, 476, 371–396. [Google Scholar] [CrossRef]
- Hayakawa, M. Possible Electromagnetic Effects on Abnormal Animal Behavior before an Earthquake. Animals 2013, 3, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, K.R.; Nagesh, Y.; Krishna, M.V. Analysis on Predicting Earthquakes through an Abnormal Behavior of Animals. Int. J. Sci. Eng. Res. 2014, 5, 845–857. [Google Scholar]
- Woith, H.; Petersen, G.M.; Hainzl, S.; Dahm, T. Review: Can Animals Predict Earthquakes? Review: Can Animals Predict Earthquakes? Bull. Seismol. Soc. Am. 2018, 108, 1031–1045. [Google Scholar] [CrossRef]
- Panagopoulos, D.J.; Balmori, A.; Chrousos, G. On the Biophysical Mechanism of Sensing Upcoming Earthquakes by Animals. Sci. Total Environ. 2020, 717, 136989. [Google Scholar] [CrossRef]
- Ambrosino, F.; Thinová, L.; Briestenský, M.; Šebela, S.; Sabbarese, C. Detecting Time Series Anomalies Using Hybrid Methods Applied to Radon Signals Recorded in Caves for Possible Correlation with Earthquakes. Acta Geod. Geophys. 2020, 55, 405–420. [Google Scholar] [CrossRef]
- Anderson, O.L.; Grew, P.C. Stress Corrosion Theory of Crack Propagation with Applications to Geophysics. Rev. Geophys. 1977, 15, 77. [Google Scholar] [CrossRef]
- Freund, F. Conversion of Dissolved “Water” into Molecular Hydrogen and Peroxy Linkages. J. Non-Cryst. Solids 1985, 71, 195–202. [Google Scholar] [CrossRef]
- Pulinets, S. Ionospheric Precursors of Earthquakes; Recent Advances in Theory and Practical Applications. Terr. Atmos. Ocean. Sci. 2004, 15, 413. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chuo, Y.J.; Shan, S.J.; Tsai, Y.B.; Chen, Y.I.; Pulinets, S.A.; Yu, S.B. Pre-Earthquake Ionospheric Anomalies Registered by Continuous GPS TEC Measurements. Ann. Geophys. 2004, 22, 1585–1593. [Google Scholar] [CrossRef]
- Stiros, S.C. The 8.5+ Magnitude, AD365 Earthquake in Crete: Coastal Uplift, Topography Changes, Archaeological and Historical Signature. Quat. Int. 2010, 216, 54–63. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Romanov, A.; Romanov, A.; Tsybulya, K.; Davidenko, D.; Kafatos, M.; Taylor, P. Atmosphere-Ionosphere Response to the M9 Tohoku Earthquake Revealed by Multi-Instrument Space-Borne and Ground Observations: Preliminary Results. Earthq. Sci. 2011, 24, 557–564. [Google Scholar] [CrossRef]
- Heki, K. Ionospheric Electron Enhancement Preceding the 2011 Tohoku-Oki Earthquake. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Sharma, M.L.; Lindholm, C. Earthquake Hazard Assessment for Dehradun, Uttarakhand, India, Including a Characteristic Earthquake Recurrence Model for the Himalaya Frontal Fault (HFF). Pure Appl. Geophys. 2011, 169, 1601–1617. [Google Scholar] [CrossRef]
- Sharma, G.; Champati ray, P.K.; Mohanty, S.; Kannaujiya, S. Ionospheric TEC Modelling for Earthquakes Precursors from GNSS Data. Quat. Int. 2017, 462, 65–74. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, P.; Wu, H.; Zhang, S.; Peng, W. Analysis of Ionospheric Anomalies before the 2011 M W 9.0 Japan Earthquake. Chin. Sci. Bull. 2012, 57, 500–510. [Google Scholar] [CrossRef]
- Báez, J.C.; Leyton, F.; Troncoso, C.; del Campo, F.; Bevis, M.; Vigny, C.; Moreno, M.; Simons, M.; Kendrick, E.; Parra, H.; et al. The Chilean GNSS Network: Current Status and Progress toward Early Warning Applications. Seismol. Res. Lett. 2018, 89, 1546–1554. [Google Scholar] [CrossRef]
- Inyurt, S.; Peker, S.; Mekik, C. Monitoring Potential Ionospheric Changes Caused by the van Earthquake. Ann. Geophys. 2019, 37, 143–151. [Google Scholar] [CrossRef]
- Contadakis, M.E.; Arabelos, D.N.; Vergos, G.; Spatalas, S.D.; Skordilis, M. TEC Variations over the Mediterranean before and during the Strong Earthquake (M = 6.5) of 12th October 2013 in Crete, Greece. Phys. Chem. Earth Parts A/B/C 2015, 85–86, 9–16. [Google Scholar] [CrossRef]
- Sharma, G.; Champati ray, P.K.; Mohanty, S.; Gautam, P.K.R.; Kannaujiya, S. Global Navigation Satellite System Detection of Preseismic Ionospheric Total Electron Content Anomalies for Strong Magnitude (Mw > 6) Himalayan Earthquakes. J. Appl. Remote Sens. 2017, 11, 046018. [Google Scholar] [CrossRef]
- Zaw, K. Chapter 24 Overview of Mineralization Styles and Tectonic–Metallogenic Setting in Myanmar. Geol. Soc. Lond. Mem. 2017, 48, 531–556. [Google Scholar] [CrossRef]
- Htay, H.; Zaw, K.; Oo, T.T. Chapter 6 the Mafic–Ultramafic (Ophiolitic) Rocks of Myanmar. Geol. Soc. Lond. Mem. 2017, 48, 117–141. [Google Scholar] [CrossRef]
- Barber, A.J.; Zaw, K.; Crow, M.J. Chapter 31 the Pre-Cenozoic Tectonic Evolution of Myanmar. Geol. Soc. Lond. Mem. 2017, 48, 687–712. [Google Scholar] [CrossRef]
- Khin, K.; Zaw, K.; Aung, L.T. Chapter 4 Geological and Tectonic Evolution of the Indo-Myanmar Ranges (IMR) in the Myanmar Region. Geol. Soc. Lond. Mem. 2017, 48, 65–79. [Google Scholar] [CrossRef]
- Sezen, U.; Arikan, F.; Arikan, O.; Ugurlu, O.; Sadeghimorad, A. Online, Automatic, Near-Real Time Estimation of GPS-TEC: IONOLAB-TEC. Space Weather 2013, 11, 297–305. [Google Scholar] [CrossRef]
- Salh, H.; Muhammad, A.; Ghafar, M.M.; Külahcı, F. Potential Utilization of Air Temperature, Total Electron Content, and Air Relative Humidity as Possible Earthquake Precursors: A Case Study of Mexico M7.4 Earthquake. J. Atmos. Sol.-Terr. Phys. 2022, 237, 105927. [Google Scholar] [CrossRef]
- Contadakis, M.E.; Arabelos, D.N.; Pikridas, C.; Spatalas, S.D. Total Electron Content Variations over Southern Europe before and during the M 6.3 Abruzzo Earthquake of April 6, 2009. Ann. Geophys. 2012, 55. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the Size of Earthquake Preparation Zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
Epicentre | Location | Magnitude | Depth (km) | Date | Time (UTC) | Strain Radius (km) | Station Used |
---|---|---|---|---|---|---|---|
19 km SE of Kodari, Nepal | 27.809° N 86.066° E | 7.3 | 15 | 12 May 2015 | 07:05:19 | 1377.21 | SYBC, NAST, CHLM |
30 km W of Imphal, India | 24.804° N 93.651° E | 6.7 | 55 | 3 January 2016 | 23:05:22 | 760.33 | RMJT, RMTE, SYBC |
38.2 km from Falam, Myanmar | 22.782° N 94.025° E | 5.9 | 10 | 16 April 2020 | 11:45 | 344.35 | TEDM, KLAY, KLAW |
29 km SSE of Kodari, Nepal | 27.705° N 86.064° E | 4.9 | 10 | 12 May 2020 | 18:08:38 | 12.94 | JIR2, KUGE, SYBC |
13 km SSW of Kakhing, India | 24.391° N 93.921° E | 5.2 | 55.1 | 25 May 2020 | 14:42:17 | 172.19 | TEDM, KLAY, KLAW |
Epicentre | Station ID | Name | Location | Epicentral Distance (km) |
---|---|---|---|---|
19 km SE of Kodari, Nepal | CHLM | Chilime | 28.207° N, 85.314° E | 86 |
NAST | NAST_SciTec_2013 | 27.656° N, 85.327° E | 74.9 | |
SYBC | Syangboche | 27.814° N, 86.712° E | 63.7 | |
30 km W of Imphal, India | RMJT | Rumjartar | 27.305° N, 86.550° E | 759.46 |
RMTE | Ramite | 26.990° N, 86.597° E | 745.08 | |
SYBC | Syangboche | 27.814° N, 86.712° E | 764.97 | |
38.2 km from Falam, Myanmar | KALW | kalw_myanmar2018 | 23.197° N, 94.304° E | 53.89 |
KLAY | klay_myanmar2018 | 23.192° N, 94.064° E | 45.35 | |
TEDM | tedm_myanmar2018 | 23.354° N, 93.649° E | 73.73 | |
29 km SSE of Kodari, Nepal | JIR2 | JIR2 | 27.657° N, 86.186° E | 13.41 |
KUGE | KUGE_NGN_NEP2018 | 27.618° N, 85.538° E | 53.07 | |
SYBC | Syangboche | 27.814° N, 86.712° E | 65.09 | |
13 km SSW of Kakhing, India | KALW | kalw_myanmar2018 | 23.197° N, 94.304° E | 141.04 |
KLAY | klay_myanmar2018 | 23.192° N, 94.064° E | 136.57 | |
TEDM | tedm_myanmar2018 | 23.354° N, 93.649° E | 120.02 |
Earthquake | Station | Epic. Dist. (km) | Negative Anomaly | Positive Anomaly |
---|---|---|---|---|
Nepal 7.3 19 km SE of Kodari, Nepal 12-May-15 | CHLM | 86 | (11, 28, 29) April (3, 21, 22, 23, 24, 25) May | (12, 15) May |
NAST | 74.9 | (11, 30) April (3, 19, 21, 22, 23, 24, 25) May | (12, 15) May | |
SYBC | 63.7 | 11 April (21, 22, 23, 24) May | (12, 15) May | |
Imphal 6.7 30 km W of Imphal, India 03-Jan-16 | RMJT | 759.46 | (4, 31) December | (20, 22, 31) December (12, 13, 16) January |
RMTE | 745.08 | (4, 31) December | (20, 22, 31) December (12, 13, 16) January | |
SYBC | 764.97 | (4, 8, 31) December | (20, 22, 31) December (12, 13, 16) January | |
Myanmar 5.9 38.2 km from Falam, Myanmar 16-April-20 | KALW | 53.89 | (9, 16, 22, ) April | (2, 3, 4, 29) April 1 May |
KLAY | 45.35 | (9, 16) April | (21, 31) March (2, 3, 4, 29) April 1 May | |
TEDM | 73.73 | (9, 16) April | (2, 3, 4, 29) April 1 May | |
Nepal 4.9 29 km SSE of Kodari, Nepal 12-May-20 | JIR2 | 13.41 | (10, 12, 18) May | (13, 20, 26) April (1, 21, 25) May |
KUGE | 53.07 | (10, 12, 14, 18) May | (13, 26) April (1, 4, 19, 21) May | |
SYBC | 65.09 | (10, 12, 18) May | (13, 26) April (1, 4, 21) May | |
Manipur 5.2 13 km SSW of Kakching, India 25-May-20 | KALW | 141.04 | (10, 11, 12, 14, 18, 29, 31) May 9 June | 29 April 1 May (2, 4) June |
KLAY | 136.57 | (10, 11, 12, 18, 29, 31) May 9 June | 29 April (1, 30) May (2, 4) June | |
TEDM | 120.02 | (10, 14, 18, 29, 31) May 9 June | 29 April 1 May (2, 4, 7) June |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, S.; Kannaujiya, S.; Joshi, U. Analysis of GNSS Data for Earthquake Precursor Studies Using IONOLAB-TEC in the Himalayan Region. Quaternary 2023, 6, 27. https://doi.org/10.3390/quat6020027
Joshi S, Kannaujiya S, Joshi U. Analysis of GNSS Data for Earthquake Precursor Studies Using IONOLAB-TEC in the Himalayan Region. Quaternary. 2023; 6(2):27. https://doi.org/10.3390/quat6020027
Chicago/Turabian StyleJoshi, Shivani, Suresh Kannaujiya, and Utkarsh Joshi. 2023. "Analysis of GNSS Data for Earthquake Precursor Studies Using IONOLAB-TEC in the Himalayan Region" Quaternary 6, no. 2: 27. https://doi.org/10.3390/quat6020027
APA StyleJoshi, S., Kannaujiya, S., & Joshi, U. (2023). Analysis of GNSS Data for Earthquake Precursor Studies Using IONOLAB-TEC in the Himalayan Region. Quaternary, 6(2), 27. https://doi.org/10.3390/quat6020027