A Framework for Crop Yield Estimation and Change Detection Using Image Fusion of Microwave and Optical Satellite Dataset
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Location and Satellite Dataset
2.2. Methodology
2.2.1. Preprocessing of Optical and Microwave Dataset
2.2.2. Nearest-Neighbor-Based Image Fusion (NNIF)
2.2.3. Post-Classification-Based Change Detection (PCCD) Using ANN
2.2.4. Validation and Cross-Referencing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anbananthen, K.S.M.; Subbiah, S.; Chelliah, D.; Sivakumar, P.; Somasundaram, V.; Velshankar, K.H.; Khan, M.K.A.A. An Intelligent Decision Support System for Crop Yield Prediction Using Hybrid Machine Learning Algorithms. F1000Research 2021, 10, 1143. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Singh, S.; Sethi, G.; Sood, V. Deep Learning in the Mapping of Agricultural Land Use Using Sentinel-2 Satellite Data. Geographies 2022, 2, 691–700. [Google Scholar] [CrossRef]
- Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A Systematic Literature Review on Crop Yield Prediction with Deep Learning and Remote Sensing. Remote Sens. 2022, 14, 1990. [Google Scholar] [CrossRef]
- Kheir, A.M.S.; Alkharabsheh, H.M.; Seleiman, M.F.; Al-Saif, A.M.; Ammar, K.A.; Attia, A.; Zoghdan, M.G.; Shabana, M.M.A.; Aboelsoud, H.; Schillaci, C. Calibration and Validation of AQUACROP and APSIM Models to Optimize Wheat Yield and Water Saving in Arid Regions. Land 2021, 10, 1375. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture: A Review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Murugan, D.; Maurya, A.K.; Garg, A.; Singh, D. A Framework for High-Resolution Soil Moisture Extraction Using SCATSAT-1 Scatterometer Data. IETE Tech. Rev. (Inst. Electron. Telecommun. Eng. India) 2020, 37, 147–156. [Google Scholar] [CrossRef]
- Chaube, N.R.; Chaurasia, S.; Tripathy, R.; Pandey, D.K.; Misra, A.; Bhattacharya, B.K.; Chauhan, P.; Yarakulla, K.; Bairagi, G.D.; Srivastava, P.K.; et al. Crop Phenology and Soil Moisture Applications of SCATSAT-1. Curr. Sci. 2019, 117, 1022–1031. [Google Scholar] [CrossRef]
- Sun, C.; Bian, Y.; Zhou, T.; Pan, J. Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region. Sensors 2019, 19, 2401. [Google Scholar] [CrossRef]
- Mazzia, V.; Khaliq, A.; Chiaberge, M. Improvement in Land Cover and Crop Classification Based on Temporal Features Learning from Sentinel-2 Data Using Recurrent-Convolutional Neural Network (R-CNN). Appl. Sci. 2020, 10, 238. [Google Scholar] [CrossRef]
- Li, K.; Yang, Z.; Shao, Y.; Liu, L.; Zhang, F. Rice Phenology Retrieval Automatically Using Polarimetric SAR. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5674–5677. [Google Scholar]
- Tripathy, R.; Bhattacharya, B.K.; Tahlani, P.; Gaur, P.; Ray, S.S. Rice Grain Yield Estimation over Some Asian Countries Using ISRO’s SCATSAT-1 Ku-Band Scatterometer Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2019, 42, 257–262. [Google Scholar] [CrossRef]
- Oveisgharan, S.; Haddad, Z.; Turk, J.; Rodriguez, E.; Li, L. Soil Moisture and Vegetation Water Content Retrieval Using QuikSCAT Data. Remote Sens. 2018, 10, 636. [Google Scholar] [CrossRef]
- Mladenova, I.; Lakshmi, V.; Walker, J.P.; Long, D.G.; De Jeu, R. An Assessment of QuikSCAT Ku-Band Scatterometer Data for Soil Moisture Sensitivity. IEEE Geosci. Remote Sens. Lett. 2009, 6, 640–643. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Rott, H. A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Kumar, P.; Gairola, R.M. Fostering the Need of L-Band Radiometer for Extreme Oceanic Wind Research. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4103906. [Google Scholar] [CrossRef]
- Hasenauer, S.; Wagner, W.; Scipal, K.; Naeimi, V.; Bartalis, Z. Implementation of near Real-Time Soil Moisture Products in the SAF Network Based on MetOp ASCAT Data. In Proceedings of the Eumetsat Meteorological Satellite Conference 2006, Helsinki, Finland, 12–16 June 2006. [Google Scholar]
- Wagner, W.; Hahn, S.; Kidd, R.; Melzer, T.; Bartalis, Z.; Hasenauer, S.; Figa-Saldaña, J.; de Rosnay, P.; Jann, A.; Schneider, S.; et al. The ASCAT Soil Moisture Product: A Review of Its Specifications, Validation Results, and Emerging Applications. Meteorol. Z. 2013, 22, 5–33. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Dorigo, W.A.; Wagner, W.; de Jeu, R.A.M.; Hahn, S.; van Marle, M.J.E. Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3513–3531. [Google Scholar] [CrossRef]
- Oza, S.R.; Parihar, J.S. Evaluation of Ku-Band QuikSCAT Scatterometer Data for Rice Crop Growth Stage Assessment. Int. J. Remote Sens. 2007, 28, 3447–3456. [Google Scholar] [CrossRef]
- Macelloni, G.; Paloscia, S.; Pampaloni, P.; Santi, E. Global Scale Monitoring of Soil and Vegetation Using SSM/I and ERS Wind Scatterometer. Int. J. Remote Sens. 2003, 24, 2409–2425. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, F.; Gruhier, C.; Juglea, S.E.; et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Mishra, M.K.; Mathew, N.; Renju, R. SCATSAT-1 Backscattering Coefficient over Distinct Land Surfaces and Its Dependence on Soil Moisture and Vegetation Dynamics. Int. J. Remote Sens. 2021, 42, 6481–6501. [Google Scholar] [CrossRef]
- Landmann, T.; Schramm, M.; Huettich, C.; Dech, S. MODIS-Based Change Vector Analysis for Assessing Wetland Dynamics in Southern Africa. Remote Sens. Lett. 2013, 4, 104–113. [Google Scholar] [CrossRef]
- Chaurasia, S.; Thapliyal, P.K.; Pal, P.K. Application of a Time-Series-Based Methodology for Soil Moisture Estimation From AMSR-E Observations Over India. IEEE Geosci. Remote Sens. Lett. 2012, 9, 818–821. [Google Scholar] [CrossRef]
- Du, J.; Kimball, J.S.; Jones, L.A. Passive Microwave Remote Sensing of Soil Moisture Based on Dynamic Vegetation Scattering Properties for AMSR-E. IEEE Trans. Geosci. Remote Sens. 2016, 54, 597–608. [Google Scholar] [CrossRef]
- Maurya, A.K.; Murugan, D.; Singh, D.; Singh, K.P. A Step for Digital Agriculture by Estimating Near Real Time Soil Moisture with Scatsat-1 Data. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 5698–5701. [Google Scholar]
- Moran, M.S.; Doorn, B.; Escobar, V.; Brown, M.E. Connecting NASA Science and Engineering with Earth Science Applications. J. Hydrometeorol. 2015, 16, 473–483. [Google Scholar] [CrossRef]
- Soisuvarn, S.; Jelenak, Z.; Chang, P. Tropical Cyclone Wind Radii Composite from the Remotely Sensed Satellite Winds. In Proceedings of the 39th Asian Conference on Remote Sensing: Remote Sensing Enabling Prosperity, ACRS 2018, Kuala Lumpur, Malaysia, 15–19 October 2018; Volume 3, pp. 1732–1737. [Google Scholar]
- Singh, S.; Tiwari, R.K.; Sood, V.; Kaur, R.; Prashar, S. The Legacy of Scatterometers: Review of Applications and Perspective. IEEE Geosci. Remote Sens. Mag. 2022, 10, 39–65. [Google Scholar] [CrossRef]
- Kaur, R.; Tiwari, R.K.; Maini, R.; Singh, S.; Sood, V. The Study of Indian Space Research Organization’s Ku-Band Based Scatterometer Satellite (SCATSAT-1) in Agriculture. In Radar Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2022; pp. 389–404. [Google Scholar]
- Maurya, A.K.; Murugan, D.; Singh, D. An Approach for Soil Moisture Estimation Using Urban and Vegetation Fraction Cover from Coarse Resolution Scatsat-1 Data. Adv. Sp. Res. 2021, 68, 1329–1340. [Google Scholar] [CrossRef]
- Singh, U.; Srivastava, P.K.; Pandey, D.K.; Chaurasia, S.; Gupta, D.K.; Chaudhary, S.K.; Prasad, R.; Raghubanshi, A.S. ScatSat-1 Leaf Area Index Product: Models Comparison, Development, and Validation over Cropland. IEEE Geosci. Remote Sens. Lett. 2020, 17, 563–567. [Google Scholar] [CrossRef]
- Singh, U.; Srivastava, P.K.; Pandey, D.K.; Chaurasia, S. Assessment of SCATSAT-1 Backscattering by Using the State-of-the-Art Water Cloud Model. Appl. Geomat. Civ. Eng. 2020, 33, 511–516. [Google Scholar]
- Gaur, P.; Tahlani, P.; Tripathy, R.; Bhattacharya, B.K.; Ray, S.S. Identification of Rice Crop Phenology Using Scatsat-1 Ku-Band Scatterometer in Punjab and Haryana. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 549–555. [Google Scholar] [CrossRef]
- Palakuru, M.; Yarrakula, K.; Chaube, N.R.; Sk, K.B.; Satyaji Rao, Y.R. Identification of Paddy Crop Phenological Parameters Using Dual Polarized SCATSAT-1 (ISRO, India) Scatterometer Data. Environ. Sci. Pollut. Res. 2019, 26, 1565–1575. [Google Scholar] [CrossRef]
- Palakurua, M.; Yarrakula, K. A Comparison Study of Space Borne Dual Polarization Difference Index (Sea Wind SCATSAT-1 Scatterometer) and NDVI (MODIS) on Paddy Crop Growth. Indian J. Geo-Mar. Sci. 2020, 49, 1580–1586. [Google Scholar]
- Palakuru, M.; Adamala, S.; Bachina, H.B. Modeling Yield and Backscatter Using Satellite Derived Biophysical Variables of Rice Crop Based on Artificial Neural Networks. J. Agrometeorol. 2020, 22, 41–47. [Google Scholar] [CrossRef]
- Tripathy, R.; Bhattacharya, B.K. Exploring Use of KU-Band Scatterometer Data from SCATSAT-1 for Crop Monitoring in India, a Case Study for Jute Crop. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 431–434. [Google Scholar]
- Singh, S.; Tiwari, R.K.; Gusain, H.S.; Sood, V. Potential Applications of SCATSAT-1 Satellite Sensor: A Systematic Review. IEEE Sens. J. 2020, 20, 12459–12471. [Google Scholar] [CrossRef]
- Sharma, R.; Agarwal, N.; Chakraborty, A.; Mallick, S.; Kumar, R. Assessing the Ocean Surface Current Impact on Scatterometer (C- And Ku-Bands) and Altimeter (Ka-Band) Derived Winds in the Bay of Bengal. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1500605. [Google Scholar] [CrossRef]
- Mishra, P.; Alok, S.; Rajak, D.R.; Beg, J.M.; Bahuguna, I.M.; Talati, I. Investigating Optimum Ship Route in the Antarctic in Presence of Sea Ice and Wind Resistances—A Case Study between Bharati and Maitri. Polar Sci. 2021, 30, 100696. [Google Scholar] [CrossRef]
- Singh, S.; Tiwari, R.K. Detection of Cryospheric Parameters with Artificial Neural Network over Antarctic Region Using Ku-Band Based ISRO’s SCATSAT-1 Data. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 435–438. [Google Scholar]
- Team, S.D. SCATSAT-1 Level 4 Data Products Format Document; Space Application Centre (ISRO): Ahmedabad, India, 2017.
- Singh, K.N.; Singh, R.K.; Maisnam, M.; Pallipad, J.; Maity, S.; Putrevu, D.; Misra, A. Detection of two recent calving events IN antarctica from SCATSAT-1. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 439–442. [Google Scholar]
- Nikam, B.R.; Garg, V.; Gupta, P.K.; Thakur, P.K.; Senthil Kumar, A.; Chouksey, A.; Aggarwal, S.P.; Dhote, P.; Purohit, S. Satellite-Based Mapping and Monitoring of Heavy Snowfall in North Western Himalaya and Its Hydrologic Consequences. Curr. Sci. 2017, 113, 2328–2334. [Google Scholar] [CrossRef]
- Kumar, R.; Bhowmick, S.A.; Chakraborty, A.; Sharma, A.; Sharma, S.; Seemanth, M.; Gupta, M.; Chakraborty, P.; Modi, J.; Misra, T. Post-Launch Calibration-Validation and Data Quality Evaluation of SCATSAT-1. Curr. Sci. 2019, 117, 973–982. [Google Scholar] [CrossRef]
- Misra, T.; Chakraborty, P.; Lad, C.; Gupta, P.; Rao, J.; Upadhyay, G.; Vinay Kumar, S.; Saravana Kumar, B.; Gangele, S.; Sinha, S.; et al. SCATSAT-1 Scatterometer: An Improved Successor of OSCAT. Curr. Sci. 2019, 117, 941–949. [Google Scholar] [CrossRef]
- Singh, S.; Tiwari, R.K.; Sood, V.; Prashar, S. Current Status of the ISRO’s SCATSAT-1 Mission, Products, Utilisation and Future Enhancements. AIP Conf. Proc. 2022, 2451, 020062. [Google Scholar]
- Sun, W.; Chen, B.; Messinger, D.W. Nearest-Neighbor Diffusion-Based Pan-Sharpening Algorithm for Spectral Images. Opt. Eng. 2014, 53, 013107. [Google Scholar] [CrossRef]
- Singh, S.; Tiwari, R.K.; Sood, V.; Prashar, S. Fusion of SCATSAT-1 and Optical Data for Cloud-Free Imaging and Its Applications in Classification. Arab. J. Geosci. 2021, 14, 1978. [Google Scholar] [CrossRef]
- Kulkarni, S.C.; Rege, P.P. Pixel Level Fusion Techniques for SAR and Optical Images: A Review. Inf. Fusion 2020, 59, 13–29. [Google Scholar] [CrossRef]
- Singh, S.; Tiwari, R.K.; Sood, V.; Gusain, H.S.; Prashar, S. Image Fusion of Ku-Band-Based SCATSAT-1 and MODIS Data for Cloud-Free Change Detection over Western Himalayas. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4302514. [Google Scholar] [CrossRef]
- Bektas Balcik, F.; Goksel, C. Determination of magnitude and direction of land use/land cover changes in terkos water basin, istanbul. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B7, 275–279. [Google Scholar] [CrossRef]
- Shah, E.; Jayaprasad, P.; James, M.E. Image Fusion of SAR and Optical Images for Identifying Antarctic Ice Features. J. Indian Soc. Remote Sens. 2019, 47, 2113–2127. [Google Scholar] [CrossRef]
- Rahman, M.M.; Sumantyo, J.T.S.; Sadek, M.F. Microwave and Optical Image Fusion for Surface and Sub-Surface Feature Mapping in Eastern Sahara. Int. J. Remote Sens. 2010, 31, 5465–5480. [Google Scholar] [CrossRef]
- Amarsaikhana, D.; Blotevogel, H.H.; van Genderenc, J.L.; Ganzorig, M.; Gantuya, R.; Nergui, B. Fusing High-Resolution SAR and Optical Imagery for Improved Urban Land Cover Study and Classification. Int. J. Image Data Fusion 2010, 1, 83–97. [Google Scholar] [CrossRef]
- Abdikan, S.; Sanli, F.B. Comparison of Different Fusion Algorithms in Urban and Agricultural Areas Using Sar (Palsar and Radarsat) and Optical (Spot) Images. Bol. Ciênc. Geod. 2012, 18, 509–531. [Google Scholar] [CrossRef]
- Du, P.; Liu, S.; Xia, J.; Zhao, Y. Information Fusion Techniques for Change Detection from Multi-Temporal Remote Sensing Images. Inf. Fusion 2013, 14, 19–27. [Google Scholar] [CrossRef]
- Snehmani; Gore, A.; Ganju, A.; Kumar, S.; Srivastava, P.K.; Hari Ram, R.P. A Comparative Analysis of Pansharpening Techniques on Quickbird and WorldView-3 Images. Geocarto Int. 2017, 32, 1268–1284. [Google Scholar] [CrossRef]
- Al-Najjar, H.A.H.; Kalantar, B.; Pradhan, B.; Saeidi, V.; Halin, A.A.; Ueda, N.; Mansor, S. Land Cover Classification from Fused DSM and UAV Images Using Convolutional Neural Networks. Remote Sens. 2019, 11, 1461. [Google Scholar] [CrossRef]
- Mitchell, H.B. Pan-Sharpening. In Image Fusion; Springer: Berlin/Heidelberg, Germany, 2010; pp. 219–227. [Google Scholar] [CrossRef]
- Gungor, O.; Akar, O. Multi Sensor Data Fusion for Change Detection. Sci. Res. Essays 2010, 5, 2823–2831. [Google Scholar]
- Mhangara, P.; Mapurisa, W.; Mudau, N. Comparison of Image Fusion Techniques Using Satellite Pour l’Observation de La Terre (SPOT) 6 Satellite Imagery. Appl. Sci. 2020, 10, 1881. [Google Scholar] [CrossRef]
- Mishra, B.; Susaki, J. SAR and Optical Data Fusion for Land Use and Cover Change Detection. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 4691–4694. [Google Scholar] [CrossRef]
- Singh, S.; Tiwari, R.K.; Sood, V.; Kaur, R.; Singh, S.; Prashar, S. Estimation and Validation of Standalone SCATSAT-1 Derived Snow Cover Area Using Different MODIS Products. Geocarto Int. 2022, 37, 18474–18490. [Google Scholar] [CrossRef]
- Canty, M.J. Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL and Python; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Sood, V.; Gusain, H.S.; Gupta, S.; Singh, S.; Kaur, S. Evaluation of SCATSAT-1 Data for Snow Cover Area Mapping over a Part of Western Himalayas. Adv. Sp. Res. 2020, 66, 2556–2567. [Google Scholar] [CrossRef]
- Abdi, A.M. Land Cover and Land Use Classification Performance of Machine Learning Algorithms in a Boreal Landscape Using Sentinel-2 Data. GISci. Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef]
- Stehman, S. V Estimating Area and Map Accuracy for Stratified Random Sampling When the Strata Are Different from the Map Classes. Int. J. Remote Sens. 2014, 35, 4923–4939. [Google Scholar] [CrossRef]
- Ramezan, C.A.; Warner, T.A.; Maxwell, A.E. Evaluation of Sampling and Cross-Validation Tuning Strategies for Regional-Scale Machine Learning Classification. Remote Sens. 2019, 11, 185. [Google Scholar] [CrossRef]
- Gupta, D.K.; Prashar, S.; Singh, S.; Srivastava, P.K.; Prasad, R. Introduction to RADAR Remote Sensing. In Radar Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2022; pp. 3–27. [Google Scholar]
Technique | Data Required | Models | Feature and Limitations | Applications |
---|---|---|---|---|
SME-1 1 | SCATSAT-1 Level-4 (S1L4)(σ°-HH 2, σ°-VV 3) MOD13A2, MOD12Q1 | MWCM 4 NDVI 5 Dubois Model | Enhanced resolution data products (up to 2 km). The outcomes are dependent on the urban factor. | Soil moisture, the impact of urban/vegetation cover on soil moisture [32] |
SME-2 6 | SCATSAT-1/Oceansat-2, MOD09Q1, MOD11C2, MOD13C1 | NDVI 5, VTCI 7 Empirical Model Dubois Model | Enhanced resolution data products (up to 5.6 km). The scaling factor of resolution improvement is based on VTCI 7. | High-resolution soil moisture products [7] |
WCM 8 | In-situ LAI measurements S1L4 (σ°-HH) | WCM 8 | Performance is highly dependent on the LAI values. Unable to distinguish the heading of the wheat crop/leaves. | Estimation of Leaf Area Index (LAI) at high temporal and spatial resolutions [33] |
O-Model 9 | Oveisgharan [13] NDVI 5 | |||
PCE 10 | S1L4 (σ°-VV) Sentinel-1 Rice crop mask | Poly. Model (6th Order) | Provides coarse resolution data products. Ease in the extraction of crop phenological stages | Rice crop phenology stages, i.e., max tillering, veg., panicle development [35] |
CYE 11 | S1L4 (σ°-HH, σ°-VV) MODIS 12 Kharif rice crop mask Crop Cutting Experiment | NDVI 5 WI 13 Statical Modeling | Soil surface roughness impacts the outcomes. Requirement of the accurate derivation of SCATSAT products. | Rice crop phenology stages (during Kharif and rabi seasons), drought monitoring, and deforestation [8,36,38] |
RGYE 14 | S1L4 (σ°-HH, σ°-VV) Kharif rice crop mask Crop Cutting Experiment Reported Yield (FAOSTAT 15) | Regression Model Ratio | More external data is needed to estimate crop yield. The accuracy of crop yield is more than 95%. | Rice crop monitoring and yield prediction [12] |
JCE 16 | S1L4 (σ°-HH, σ°-VV) | ISO 16 Data Classification | No training data is required. More precision is required. | Jute crop yield [39] |
Accuracy Max (%) | Accuracy Min (%) | Max Error (%) | Overall | ||||||
---|---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | OE | CE | Kappa | Accuracy | ||
20 November 2019 | σ°-HH | 95.40 | 95.79 | 94.52 | 92.00 | 5.48 | 8.00 | 0.9234 | 94.92 |
σ°-VV | 96.94 | 93.33 | 92.21 | 91.03 | 7.79 | 9.97 | 0.8819 | 92.19 | |
γ°-HH | 96.39 | 96.84 | 92.00 | 92.00 | 8.00 | 8.00 | 0.9116 | 94.14 | |
γ°-VV | 94.59 | 94.19 | 93.10 | 93.33 | 6.90 | 6.67 | 0.9058 | 93.75 | |
20 December 2019 | σ°-HH | 94.94 | 97.89 | 92.08 | 87.21 | 7.92 | 12.79 | 0.8939 | 92.97 |
σ°-VV | 91.67 | 92.63 | 87.67 | 85.33 | 2.33 | 4.67 | 0.8527 | 90.23 | |
γ°-HH | 94.05 | 95.79 | 90.54 | 91.86 | 9.46 | 8.14 | 0.8881 | 92.58 | |
γ°-VV | 92.96 | 95.79 | 90.10 | 90.70 | 9.90 | 9.30 | 0.8761 | 91.80 | |
20 January 2020 | σ°-HH | 97.50 | 97.89 | 91.18 | 90.70 | 8.82 | 9.30 | 0.9116 | 94.14 |
σ°-VV | 94.59 | 93.33 | 90.72 | 91.86 | 9.28 | 8.14 | 0.8881 | 92.58 | |
γ°-HH | 94.12 | 94.74 | 92.00 | 92.00 | 8.00 | 8.00 | 0.8999 | 93.36 | |
γ°-VV | 94.19 | 92.63 | 90.79 | 92.00 | 9.21 | 8.00 | 0.8941 | 92.97 |
Accuracy Max (%) | Accuracy Min (%) | Max Error (%) | Overall | ||||||
---|---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | OE | CE | Kappa | Accuracy | ||
November 2019–December 2019 | σ°-HH | 94.29 | 96.77 | 86.11 | 80.00 | 13.89 | 20.00 | 0.8997 | 91.80 |
σ°-VV | 94.34 | 93.24 | 75.00 | 80.00 | 25.00 | 20.00 | 0.8645 | 89.06 | |
γ°-HH | 94.55 | 94.55 | 74.07 | 73.33 | 25.93 | 26.67 | 0.8692 | 89.45 | |
γ°-VV | 95.83 | 97.37 | 74.29 | 76.00 | 25.71 | 24.00 | 0.8696 | 89.45 | |
December 2019–January 2020 | σ°-HH | 96.36 | 96.36 | 79.31 | 72.00 | 20.69 | 28.00 | 0.8597 | 88.67 |
σ°-VV | 96.15 | 94.59 | 71.43 | 80.00 | 28.57 | 20.00 | 0.8549 | 88.28 | |
γ°-HH | 93.24 | 93.24 | 76.92 | 80.00 | 23.08 | 20.00 | 0.8597 | 88.67 | |
γ°-VV | 94.34 | 95.95 | 71.43 | 79.41 | 28.57 | 20.59 | 0.8548 | 88.28 |
Accuracy Max (%) | Accuracy Min (%) | Max Error (%) | Overall | ||||||
---|---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | OE | CE | Kappa | Accuracy | ||
20 November 2019 | σ°-HH | 91.92 | 91.00 | 89.47 | 90.12 | 10.53 | 9.88 | 0.8584 | 90.63 |
σ°-VV | 90.43 | 93.75 | 86.11 | 82.67 | 13.89 | 17.33 | 0.8311 | 88.80 | |
γ°-HH | 90.67 | 92.00 | 89.61 | 85.00 | 10.39 | 15.00 | 0.8431 | 89.60 | |
γ°-VV | 90.54 | 88.89 | 89.33 | 90.53 | 10.67 | 9.47 | 0.8492 | 90.00 | |
20 December 2019 | σ°-HH | 92.68 | 94.67 | 87.78 | 84.44 | 12.22 | 15.56 | 0.8558 | 90.40 |
σ°-VV | 90.70 | 91.01 | 86.17 | 82.67 | 13.83 | 17.33 | 0.8253 | 88.40 | |
γ°-HH | 90.24 | 88.76 | 83.33 | 86.05 | 16.67 | 13.95 | 0.8076 | 87.20 | |
γ°-VV | 88.41 | 91.01 | 86.17 | 81.33 | 13.83 | 18.67 | 0.8011 | 86.80 | |
20 January 2020 | σ°-HH | 92.41 | 93.33 | 87.50 | 87.95 | 12.5 | 12.05 | 0.8557 | 90.40 |
σ°-VV | 89.04 | 92.39 | 88.75 | 85.54 | 11.25 | 14.46 | 0.8251 | 88.40 | |
γ°-HH | 89.47 | 92.39 | 88.89 | 85.33 | 11.11 | 14.67 | 0.8372 | 89.20 | |
γ°-VV | 89.87 | 90.22 | 85.71 | 85.54 | 14.29 | 14.46 | 0.8194 | 88.00 |
Accuracy Max (%) | Accuracy Min (%) | Max Error (%) | Overall | ||||||
---|---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | OE | CE | Kappa | Accuracy | ||
November 2019–December 2019 | σ°-HH | 92.63 | 94.62 | 72.00 | 72.00 | 28.00 | 28.00 | 0.8403 | 87.60 |
σ°-VV | 96.67 | 92.00 | 75.00 | 73.53 | 25.00 | 26.47 | 0.8260 | 86.40 | |
γ°-HH | 92.45 | 97.03 | 78.57 | 65.52 | 21.43 | 34.48 | 0.8312 | 87.20 | |
γ°-VV | 92.78 | 93.75 | 75.00 | 60.00 | 25.00 | 40.00 | 0.8241 | 86.40 | |
December 2019–January 2020 | σ°-HH | 91.67 | 97.06 | 78.57 | 64.00 | 21.43 | 36.00 | 0.8252 | 86.80 |
σ°-VV | 92.63 | 91.67 | 77.14 | 79.41 | 22.86 | 20.59 | 0.8247 | 86.40 | |
γ°-HH | 91.43 | 100 | 76.47 | 64.00 | 23.53 | 36.00 | 0.8263 | 86.80 | |
γ°-VV | 91.67 | 91.67 | 78.57 | 68.00 | 21.43 | 32.00 | 0.8193 | 86.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, R.; Tiwari, R.K.; Maini, R.; Singh, S. A Framework for Crop Yield Estimation and Change Detection Using Image Fusion of Microwave and Optical Satellite Dataset. Quaternary 2023, 6, 28. https://doi.org/10.3390/quat6020028
Kaur R, Tiwari RK, Maini R, Singh S. A Framework for Crop Yield Estimation and Change Detection Using Image Fusion of Microwave and Optical Satellite Dataset. Quaternary. 2023; 6(2):28. https://doi.org/10.3390/quat6020028
Chicago/Turabian StyleKaur, Ravneet, Reet Kamal Tiwari, Raman Maini, and Sartajvir Singh. 2023. "A Framework for Crop Yield Estimation and Change Detection Using Image Fusion of Microwave and Optical Satellite Dataset" Quaternary 6, no. 2: 28. https://doi.org/10.3390/quat6020028
APA StyleKaur, R., Tiwari, R. K., Maini, R., & Singh, S. (2023). A Framework for Crop Yield Estimation and Change Detection Using Image Fusion of Microwave and Optical Satellite Dataset. Quaternary, 6(2), 28. https://doi.org/10.3390/quat6020028