Oil/Brine Screening for Improved Fluid/Fluid Interactions during Low-Salinity Water Flooding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Oil Characteristics
2.1.2. Chemicals and LSW Design
2.2. Experiments
2.2.1. Brine Solutions Preparation
2.2.2. Microemulsions Measurement
2.2.3. IFT Measurements
2.2.4. Rheology Measurements
3. Results and Discussion
3.1. IFT Reduction
3.2. Microemulsion Generation
SARA | ION CONCENTRATION | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference | Sat. (wt. %) | Aro. (wt. %) | Res. (wt. %) | Asph. (wt. %) | TAN (mg KOH) | TDS (mg/L) | Na+ (mg/L) | K+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | SO42− (mg/L) | Micro Dispersion Ratio (%) | Improved EOR (%) |
(Fattahi et al., 2021) [20] * | 76.06 | 21.13 | 2.49 | 0.32 | 0.11 | 493.53 | 284.05 | 8 | 18 | 137 | 44 | 2.32 | 0 |
(Fattahi et al., 2021) [20] * | 33.64 | 46.76 | 16.93 | 2.67 | 0.3 | 493.53 | 284.05 | 8 | 18 | 137 | 44 | 13.24 | 5.38 |
(Mahzari et al., 2018) [40] | 49.14 | 33.19 | 16.85 | 0.82 | 0.55 | 1238 | 381.24 | 14.9 | 13.51 | 45.055 | 93.57 | 13 | |
(Mahzari et al., 2018) [40] | 53.37 | 39.76 | 6.87 | 0.001 | 0.35 | 1238 | 381.24 | 14.9 | 13.51 | 45.055 | 93.57 | 2.1 | |
(Mahzari, et al., 2019) [41] * | 63.66 | 24.9 | 11.29 | 0.15 | 0.15 | 500 | 400 | 100 | 2.1 | ||||
(Mahzari, et al., 2019) [41] * | 24.56 | 42.01 | 31.75 | 1.71 | 1.35 | 500 | 400 | 100 | 9.5 | ||||
(Mahzari, et al., 2019) [41] * | 62.23 | 29.97 | 7.6 | 0.2 | 1.71 | 500 | 400 | 100 | 48.6 | 4.50 | |||
(Mahzari, et al., 2019) [41] * | 39.24 | 30.38 | 11.67 | 18.71 | 0.2 | 500 | 400 | 100 | 11.01 | 4.50 | |||
(Mahzari, et al., 2019) [41] * | 79.07 | 19.48 | 1.4 | 0.05 | 0.01 | 500 | 400 | 100 | 2.1 | 5.90 | |||
(Mahzari, et al., 2019) [41] * | 44.6 | 43.32 | 10.08 | 2 | 0.05 | 500 | 400 | 100 | 7.8 | 6 | |||
(Mahzari, et al., 2019) [41] * | 40.95 | 24.9 | 34.1 | 0.05 | 0.25 | 500 | 400 | 100 | 29.5 | 5.70 |
3.3. Viscoelastic Modulus Increase
3.4. Best Brine Selection
4. Conclusions
- The zone between 0% and 3 wt.% asphaltene content exhibits the most prominent decrease in IFT, exceeding 45%. At low salinity (0–10,000 ppm), the IFT reduction is primarily influenced by oil composition, specifically the asphaltene content, as the interface lacks surface-active components.
- For oil sample A, the IFT demonstrates optimal outcomes at higher concentrations of divalent ions (Brine 6 and Brine 8), while for oil sample B, the controlling ion group for this mechanism is sulfates. A discernible trend emerges where the most favorable scenarios lie in the intermediate region between sulfates and monovalents (i.e., Brine 4, Brine 9, and Brine 10).
- At high asphaltene concentrations, the mechanism facilitating the micro-dispersion formation becomes less effective; for all the ratios exceeding this 10-fold threshold, a consistent average improvement of 5% in the recovery factor is evident, indicating that microemulsions are not a controlling mechanism in fluid/fluid interactions.
- W/O microemulsions in sample A may not be solely attributed to a lower CII but could be related to the characteristics of the asphaltenes. For oil sample A, the intensification of the microemulsion formation is evident as the system shifts toward divalent and sulfate-rich conditions (i.e., Brine 8, Brine 9, and Brine 10). For oil sample B, all the inner regions of the diagram display a high phase volume fraction, except for the innermost part (i.e., Brine 7, Brine 8, and Brine 9).
- The presence of asphaltene in the interface implies an increase in the energy required to disrupt it. Significant changes occur in the elastic moduli at low salinity (0–10,000 ppm) as ample space at the interface allows surface-active components to position themselves, inducing shifts in elasticity. In essence, the presence of these components in the available space affects how materials respond to stress.
- For oil sample A, the storage modulus demonstrates superior performance at high ionic concentrations within each group. A favorable 1:2 sulfates-to-monovalent ratio and 1:3 divalent-to-monovalent ratio confirm Mg2+ and SO42− as a positive influence on the interface (Brine 2, Brine 3, Brine 5, Brine 6, Brine 8, and Brine 9). Sample B exhibits an inverse relation between microemulsions and the storage modulus, as the modulus values increase with higher ion concentrations. This suggests that the interface is not saturated and has room for the presence of surface-active components (Brine 5 and Brine 8).
- For sample A, the most favorable brine is identified as Brine 8, highlighting the system’s affinity for divalent ions. For sample B, the experimental phase was dominated by the paraffin content and temperature, leading Brines 8 and 9 to be the best options, indicating the interface in sample B exhibits greater adaptability in responding to ions in the brine, signifying promising practical applications.
- Recognizing the ionic ternary diagram as a crucial tool in LSWF/SWF modeling enables the exploration of fluid/fluid interactions as potential mechanisms, alongside well-established rock/fluid mechanisms, like wettability alteration and fines migration.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Austad, T. Chapter 13—Water-Based EOR in Carbonates and Sandstones: New Chemical Understanding of the EOR Potential Using “Smart Water”. In Enhanced Oil Recovery Field Case Studies; Sheng, J.J., Ed.; Gulf Professional Publishing: Boston, MA, USA, 2013; pp. 301–335. [Google Scholar] [CrossRef]
- Austad, T.; RezaeiDoust, A.; Puntervold, T. Chemical Mechanism of Low Salinity Water Flooding in Sandstone Reservoirs. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OA, USA, 24–28 April 2010; SPE: Kuala Lumpur, Malaysia, 2010; p. SPE-129767-MS. [Google Scholar] [CrossRef]
- Sorop, T.G.; Suijkerbuijk, B.M.; Masalmeh, S.K.; Looijer, M.T.; Parker, A.R.; Dindoruk, D.M.; Goodyear, S.G.; Al-Qarshubi, I.S. Integrated Approach in Deploying Low Salinity Waterflooding. In Proceedings of the SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 2–4 July 2013; SPE: Kuala Lumpur, Malaysia, 2013. [Google Scholar] [CrossRef]
- Masalmeh, S.; Al-Hammadi, M.; Farzaneh, A.; Sohrabi, M. Low Salinity Water Flooding in Carbonate: Screening, Laboratory Quantification and Field Implementation. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 11–14 November 2019; SPE: Kuala Lumpur, Malaysia, 2019. [Google Scholar] [CrossRef]
- Korrani, A.K.N.; Jerauld, G.R. Upscaling Low-Salinity Benefit from Laboratory Scale to Field Scale: An Ensemble of Models with a Relative Permeability Uncertainty Range. SPE J. 2022, 27, 3674–3687. [Google Scholar] [CrossRef]
- Mamonov, A.; Puntervold, T.; Strand, S. EOR by Smart Water Flooding in Sandstone Reservoirs—Effect of Sandstone Mineralogy on Initial Wetting and Oil Recovery. In Proceedings of the SPE Russian Petroleum Technology Conference, Moscow, Russia, 16–18 October 2017; p. D033S021R003. [Google Scholar] [CrossRef]
- Tahir, M.; Hincapie, R.E.; Gaol, C.; Saefken, S.; Ganzer, L. Describing the Flow Behavior of Smart Water in Micromodels with Wettability Modified Pore Structures. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Virtual, 27–31 July 2020; SPE: Kuala Lumpur, Malaysia, 2020. [Google Scholar] [CrossRef]
- Zhang, P.; Austad, T. Wettability and oil recovery from carbonates: Effects of temperature and potential determining ions. Colloids Surf. Physicochem. Eng. Asp. 2006, 279, 179–187. [Google Scholar] [CrossRef]
- Nasralla, R.A.; Bataweel, M.A.; Nasr-El-Din, H.A. Investigation of wettability alteration and oil-recovery improvement by low-salinity water in sandstone rock. J. Can. Pet. Technol. 2013, 52, 144–154. [Google Scholar] [CrossRef]
- Mohamed, M.I.; Alvarado, V. Smart Water Flooding in Berea Sandstone at Low Temperature: Is Wettability Alteration the Sole Mechanism at Play? In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 9–11 October 2017; SPE: Kuala Lumpur, Malaysia, 2017; p. D031S046R007. [Google Scholar] [CrossRef]
- Yue, L.; Pu, W.; Zhao, S.; Zhang, S.; Ren, F.; Xu, D. Insights into mechanism of low salinity water flooding in sandstone reservoir from interfacial features of oil/brine/rock via intermolecular forces. J. Mol. Liq. 2020, 313, 113435. [Google Scholar] [CrossRef]
- Mokhtari, R.; Ayatollahi, S.; Fatemi, M. Experimental investigation of the influence of fluid-fluid interactions on oil recovery during low salinity water flooding. J. Pet. Sci. Eng. 2019, 182, 106194. [Google Scholar] [CrossRef]
- Farhadi, H.; Ayatollahi, S.; Fatemi, M. The effect of brine salinity and oil components on dynamic IFT behavior of oil-brine during low salinity water flooding: Diffusion coefficient, EDL establishment time, and IFT reduction rate. J. Pet. Sci. Eng. 2021, 196, 107862. [Google Scholar] [CrossRef]
- Chai, R.; Liu, Y.; He, Y.; Cai, M.; Zhang, J.; Liu, F.; Xue, L. Effects and Mechanisms of Acidic Crude Oil–Aqueous Solution Interaction in Low-Salinity Waterflooding. Energy Fuels 2021, 35, 9860–9872. [Google Scholar] [CrossRef]
- Kakati, A.; Sangwai, J.S. Effect of monovalent and divalent salts on the interfacial tension of pure hydrocarbon-brine systems relevant for low salinity water flooding. J. Pet. Sci. Eng. 2017, 157, 1106–1114. [Google Scholar] [CrossRef]
- Tetteh, J.T.; Barati, R. Crude-Oil/Brine Interaction as a Recovery Mechanism for Low-Salinity Waterflooding of Carbonate Reservoirs. SPE Reserv. Evaluat. Eng. 2019, 22, 877–896. [Google Scholar] [CrossRef]
- Moeini, F.; Hemmati-Sarapardeh, A.; Ghazanfari, M.-H.; Masihi, M.; Ayatollahi, S. Toward mechanistic understanding of heavy crude oil/brine interfacial tension: The roles of salinity, temperature and pressure. Fluid Phase Equilibria 2014, 375, 191–200. [Google Scholar] [CrossRef]
- Lashkarbolooki, M.; Riazi, M.; Ayatollahi, S.; Hezave, A.Z. Synergy effects of ions, resin, and asphaltene on interfacial tension of acidic crude oil and low–high salinity brines. Fuel 2016, 165, 75–85. [Google Scholar] [CrossRef]
- Kakati, A.; Kumar, G.; Sangwai, J.S. Oil Recovery Efficiency and Mechanism of Low Salinity-Enhanced Oil Recovery for Light Crude Oil with a Low Acid Number. ACS Omega 2020, 5, 1506–1518. [Google Scholar] [CrossRef] [PubMed]
- Lashkarbolooki, M.; Ayatollahi, S. Effects of asphaltene, resin and crude oil type on the interfacial tension of crude oil/brine solution. Fuel 2018, 223, 261–267. [Google Scholar] [CrossRef]
- Bidhendi, M.M.; Garcia-Olvera, G.; Morin, B.; Oakey, J.S.; Alvarado, V. Interfacial Viscoelasticity of Crude Oil/Brine: An Alternative Enhanced-Oil-Recovery Mechanism in Smart Waterflooding. SPE J. 2018, 23, 803–818. [Google Scholar] [CrossRef]
- Mehraban, M.F.; Farzaneh, S.A.; Sohrabi, M. Functional compounds of crude oil during low salinity water injection. Fuel 2021, 285, 119144. [Google Scholar] [CrossRef]
- Garcia-Olvera, G.; Reilly, T.M.; Lehmann, T.E.; Alvarado, V. Effects of asphaltenes and organic acids on crude oil-brine interfacial visco-elasticity and oil recovery in low-salinity waterflooding. Fuel 2016, 185, 151–163. [Google Scholar] [CrossRef]
- Chávez-Miyauch, T.E.; Lu, Y.; Firoozabadi, A. Low salinity water injection in Berea sandstone: Effect of wettability, interface elasticity, and acid and base functionalities. Fuel 2020, 263, 116572. [Google Scholar] [CrossRef]
- Alvarado, V.; Garcia-Olvera, G.; Hoyer, P.; Lehmann, T.E. Impact of Polar Components on Crude Oil-Water interfacial Film Formation: A Mechanisms for Low-Salinity Waterflooding. In Proceedings of the SPE Annual Technical Conference and Exhibition, Amsterdam, The Netherlands, 27–29 October 2014; SPE: Kuala Lumpur, Malaysia, 2014; pp. 3114–3128. [Google Scholar] [CrossRef]
- Mahmoudvand, M.; Javadi, A.; Pourafshary, P. Brine ions impacts on water-oil dynamic interfacial properties considering asphaltene and maltene constituents. Colloids Surf. Physicochem. Eng. Asp. 2019, 579, 123665. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Shi, L.; Zou, Z.; Ye, Z.; Wang, H.; Han, L. A comprehensive insight on the impact of individual ions on Engineered Waterflood: With already strongly water-wet sandstone. J. Pet. Sci. Eng. 2021, 207, 109153. [Google Scholar] [CrossRef]
- Emadi, A.; Sohrabi, M. Visual Investigation of Oil Recovery by Low Salinity Water Injection: Formation of Water Micro-Dispersions and Wettability Alteration. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2013; SPE: Kuala Lumpur, Malaysia, 2013. [Google Scholar] [CrossRef]
- Maghsoudian, A.; Esfandiarian, A.; Kord, S.; Tamsilian, Y.; Soulgani, B.S. Direct insights into the micro and macro scale mechanisms of symbiotic effect of SO42−, Mg2+, and Ca2+ ions concentration for smart waterflooding in the carbonated coated micromodel system. J. Mol. Liq. 2020, 315, 113700. [Google Scholar] [CrossRef]
- Mahzari, P.; Sohrabi, M. Crude Oil/Brine Interactions and Spontaneous Formation of Micro-Dispersions in Low Salinity Water Injection. In Proceedings of the SPE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 12–16 April 2014; Volume 2, pp. 731–745. [Google Scholar] [CrossRef]
- Collins, I.R. Holistic Benefits of Low Salinity Waterflooding. In Proceedings of the IOR 2011—16th European Symposium on Improved Oil Recovery, Cambridge, UK, 12–14 April 2011. [Google Scholar] [CrossRef]
- Rahimi, A.; Safari, M.; Honarvar, B.; Chabook, H.; Gholami, R. On time dependency of interfacial tension through low salinity carbonated water injection. Fuel 2020, 280, 118492. [Google Scholar] [CrossRef]
- Ghorbanizadeh, S.; Rostami, B. Surface and Interfacial Tension Behavior of Salt Water Containing Dissolved Amphiphilic Compounds of Crude Oil: The Role of Single-Salt Ionic Composition. Energy Fuels 2017, 31, 9117–9124. [Google Scholar] [CrossRef]
- Sauerer, B.; Al-Hamad, M.; Ma, S.M.; Abdallah, W. Effect of formation water salinity on interfacial tension of reservoir fluids. J. Pet. Sci. Eng. 2021, 204, 108700. [Google Scholar] [CrossRef]
- Alotaibi, M.B.; Nasr-El-Din, H.A. Effect of Brine Salinity on Reservoir Fluids Interfacial Tension. In Proceedings of the EUROPEC/EAGE Conference and Exhibition, Amsterdam, The Netherlands, 8–11 June 2009; SPE: Kuala Lumpur, Malaysia, 2009. [Google Scholar] [CrossRef]
- Mokhtari, R.; Ayatollahi, S. Dissociation of polar oil components in low salinity water and its impact on crude oil–brine interfacial interactions and physical properties. Pet. Sci. 2019, 16, 328–343. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Mohammadi, S.; Mahani, H.; Ayatollahi, S. The non-linear effect of oil polarity on the efficiency of low salinity waterflooding: A pore-level investigation. J. Mol. Liq. 2022, 346, 117069. [Google Scholar] [CrossRef]
- Rostami, P.; Mehraban, M.F.; Sharifi, M.; Dejam, M.; Ayatollahi, S. Effect of water salinity on oil/brine interfacial behavior during low salinity waterflooding: A mechanistic study. Petroleum 2019, 5, 367–374. [Google Scholar] [CrossRef]
- Holmberg, K. Organic reactions in microemulsions. Curr. Opin. Colloid Interface Sci. 2003, 8, 187–196. [Google Scholar] [CrossRef]
- Mahzari, P.; Sohrabi, M.; Cooke, A.J.; Carnegie, A. Direct pore-scale visualization of interactions between different crude oils and low salinity brine. J. Pet. Sci. Eng. 2018, 166, 73–84. [Google Scholar] [CrossRef]
- Mahzari, P.; Sohrabi, M.; Facanha, J.M.F. The Decisive Role of Microdispersion Formation in Improved Oil Recovery by Low-Salinity-Water Injection in Sandstone Formations. SPE J. 2019, 24, 2859–2873. [Google Scholar] [CrossRef]
- Saad, A.M.; Aime, S.; Mahavadi, S.C.; Song, Y.-Q.; Yutkin, M.P.; Weitz, D.; Patzek, T.W. Adsorption of Polar Species at Crude Oil–Water Interfaces: The Chemoelastic Behavior. Langmuir 2022, 38, 6523–6530. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Olvera, G.; Alvarado, V. Interfacial rheological insights of sulfate-enriched smart-water at low and high-salinity in carbonates. Fuel 2017, 207, 402–412. [Google Scholar] [CrossRef]
- Da Costa, A.A.; Trivedi, J.; Soares, J.; Rocha, P.; Costa, G.; Embiruçu, M. An experimental evaluation of low salinity water mechanisms in a typical Brazilian sandstone and light crude oil with low acid/basic number. Fuel 2020, 273, 117694. [Google Scholar] [CrossRef]
Sample Name | Density (g/cc) | Kinematic Viscosity (cSt) | Dynamic Viscosity (cP) |
---|---|---|---|
Sample A (@20C) | 0.857 | 50.7 | 43.40 |
Sample B (@63C) | 0.823 | 11.4 | 9.41 |
Required Salt | Chemical Formula | Purity |
---|---|---|
Sodium Cloride | NaCl | ≥99.9 |
Sodium Sulfate | Na2SO4 | ≥99.9 |
Magnesium Cloride hexahydrated | MgCl2 6H2O | ≥99.9 |
# of the Brine. | NaCl (mg/L) | MgCl2 6H2O (mg/L) | Na2SO4 (mg/L) | Ionic Strength (M) | Density (g/cc) |
---|---|---|---|---|---|
DW | 0 | 0 | 0 | 0 | 1.0000 |
Brine 1 | 5000 | 0 | 0 | 0.18 | 1.0028 |
Brine 2 | 0 | 5000 | 0 | 0.55 | 1.0050 |
Brine 3 | 0 | 0 | 5000 | 0.32 | 1.0030 |
Brine 4 | 2500 | 0 | 2500 | 0.25 | 1.0022 |
Brine 5 | 2500 | 2500 | 0 | 0.37 | 1.0025 |
Brine 6 | 0 | 2500 | 2500 | 0.44 | 1.0019 |
Brine 7 | 2500 | 1250 | 1250 | 0.31 | 1.0019 |
Brine 8 | 1250 | 2500 | 1250 | 0.40 | 1.0032 |
Brine 9 | 1250 | 1250 | 2500 | 0.34 | 1.0019 |
Brine 10 | 1700 | 1650 | 1650 | 0.35 | 1.0031 |
SARA | ION CONCENTRATION | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
References | Sat. (wt. %) | Aro. (wt. %) | Res. (wt. %) | Asph. (wt. %) | TAN (mg KOH) | TDS (mg/L) | Na+ (mg/L) | K+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | SO42− (mg/L) | IFT (mN/m) | IFT Change (%) | RF (%) | RF EOR Change (%) |
(Kakati et al., 2020) [19] | 0.12 | 18,665.6 | 5545 | 1003 | 245 | 11.39 | 36 | ||||||||
(Farhadi, et al., 2021) [13] * | 63.96 | 25.33 | 9.06 | 1.65 | 0.14 | 37,012.5 | 21,300 | 600 | 1350 | 10,297.5 | 3367.5 | 5 | 44 | ||
(Rahimi et al., 2020) [32] | 51.35 | 30.28 | 9.78 | 8.59 | 35,000 | 6500 | 6500 | 419 | 1304 | 146 | 15 | 35 | |||
(Kakati and Sangwai, 2017) [15] | 3000 | 3000 | 30.97 | 12 | |||||||||||
(Moeini et al., 2014) [17] | 30.1 | 42.1 | 13.36 | 13.75 | 0.06 | 40,000 | 40,000 | 12 | 37 | ||||||
(Ghorbanizadeh and Rostami, 2017) [33] * | 32.44 | 41.36 | 13.56 | 12.64 | 2.07 | 35,511 | 35,511 | 19 | 63 | ||||||
(Sauerer et al., 2021) [34] | 100,000 | 4.7 | 46 | ||||||||||||
(Lashkarbolooki, et al., 2016) [18] * | 1.46 | 43,336 | 7156 | 7156 | 479 | 1626 | 3029 | 14 | |||||||
(Alotaibi and Nasr-El-Din, 2009) [35] | 50,000 | 50,000 | 42 | 5 | |||||||||||
(Mokhtari and Ayatollahi, 2019) [36] * | 0.6 | 0.14 | 4162 | 2842 | 82 | 138 | 642 | 448 | 16 | 26 | |||||
(Lashkarbolooki, et al., 2018) [20] * | 11 | 13 | 1.46 | 43,336 | 7156 | 7156 | 479 | 1626 | 3029 | 5 | 19 | ||||
(Chai et al., 2021) [14] | 51.82 | 29.36 | 16.77 | 2.05 | 0.18 | 2105.41 | 512.62 | 24.15 | 44 | 125.7 | 100.6 | 14 | 26 | 46 | 2 |
(Kakati, et al., 2020) [19] | 0.12 | 8188 | 2952 | 300 | 990 | 522 | 8.92 | 43 | 54 | 8 | |||||
(Mokhtari, et al., 2019) [12] * | 0.6 | 0.14 | 4162 | 2842 | 82 | 642 | 138 | 448 | 10.33 | 50 | 82 | 20 | |||
(Tetteh and Barati, 2019) [16] | 0.73 | 0.17 | 32,895 | 9600 | 100 | 2200 | 560 | 0 | 11.5 | 49 | 45 | 9 | |||
(Golmohammadi et al., 2022) [37] | 63.96 | 25.33 | 9.06 | 1.65 | 0.14 | 5000 | 5000 | 12.5 | 29 | 75 | |||||
(Wang et al., 2021) [27] | 31.63 | 38.78 | 8.66 | 20.93 | 1000 | 324 | 676 | 10.5 | 14 | 61 | 6 | ||||
(Rostami et al., 2019) [38] * | 0.2 | 20,800 | 14,200 | 690 | 3215 | 2245 | 8.7 | 53 |
Sample A | Sample B | |||
---|---|---|---|---|
# of the Brine. | IFT (mN/m) | Bond Number | IFT (mN/m) | Bond Number |
DW | 26.140 | 0.6706 | 17.367 | 0.9245 |
Brine 1 | 21.617 | 0.6327 | 14.997 | 0.977 |
Brine 2 | 22.503 | 0.6299 | 12.050 | 0.8688 |
Brine 3 | 20.470 | 0.6333 | 15.090 | 0.8258 |
Brine 4 | 15.780 | 0.8918 | 10.530 | 0.8096 |
Brine 5 | 9.243 | 0.8918 | 15.447 | 0.8976 |
Brine 6 | 8.597 | 0.8973 | 12.667 | 0.8519 |
Brine 7 | 21.563 | 0.6057 | 11.420 | 0.8276 |
Brine 8 | 6.613 | 0.9313 | 15.513 | 0.8037 |
Brine 9 | 11.167 | 0.8631 | 11.460 | 0.8434 |
Brine 10 | 9.887 | 0.9295 | 13.203 | 0.6592 |
Sample A | Sample B | |||
---|---|---|---|---|
# of the Brine. | Type | Phase Volume Fraction (%) | Type | Phase Volume Fraction (%) |
DW | Lower | 50% | Lower | 50% |
Brine 1 | Upper | 48% | Lower | 52% |
Brine 2 | Upper | 49% | Lower | 50% |
Brine 3 | Upper | 47% | Upper | 50% |
Brine 4 | Upper | 46% | Lower | 50% |
Brine 5 | Upper | 48% | Lower | 50% |
Brine 6 | Upper | 49% | Lower | 65% |
Brine 7 | Upper | 48% | Lower | 62% |
Brine 8 | Upper | 46% | Lower | 60% |
Brine 9 | Upper | 47% | Lower | 65% |
Brine 10 | Upper | 48% | Lower | 50% |
SARA | ION CONCENTRATION | ION CONCENTRATION | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference | Sat. (wt. %) | Aro. (wt. %) | Res. (wt. %) | Asph. (wt. %) | TAN (mg KOH) | TDS (mg/L) | Na+ (mg/L) | K+ (mgL) | Ca2+ (mg/L) | Mg2+ (mg/L) | SO42− (mg/L) | Elastic Mod. (mN/m) | Change in Elastic Mod. (%) | RF (%) | RF EOR Change (%) |
(Saad et al., 2022) [42] * | 38.3 | 19.8 | 36.6 | 3.97 | 1.19 | 14,204 | 14,204 | 25 | 4 | ||||||
(Chávez-Miyauch, et al., 2020) [24] | 0.124 | 1000 | 1000 | 81.3 | 302 | 82 | 25 | ||||||||
(Tetteh and Barati, 2019) [16] | 0.73 | 0.17 | 32,895 | 9600 | 100 | 2200 | 560 | 0 | 12 | 500 | 42 | 11 | |||
(Garcia-olivera and Alvarado, 2017) [43] | 36.3 | 36.11 | 8.59 | 18.99 | 36,600 | 8700 | 12.5 | 150 | 50 | 9 | |||||
(Wang et al., 2021) [27] | 31.63 | 38.78 | 8.66 | 20.93 | 1000 | 324 | 676 | 42.5 | 750 | 63 | 13 | ||||
(Chai et al., 2021) [14] | 51.82 | 29.36 | 16.77 | 2.05 | 0.18 | 2105.41 | 512.62 | 24.15 | 44 | 125.7 | 100.6 | 24 | 140 | 46 | 2 |
(Alvarado et al., 2014) [25] | 33.4 | 49.9 | 9 | 7.6 | 9551 | 3184 | 6367 | 110 | 144 | 50 | 9 | ||||
(Bidhendi et al., 2018) [21] | 5 | 955 | 318 | 637 | 47.5 | 428 | 81 | 29 | |||||||
(Mahmoudvand, et al., 2019) [26] | 38.99 | 50.59 | 4.25 | 6.17 | 9521 | 3184 | 27.5 | 10 | |||||||
(Mohamed and Alvarado, 2017) [10] | 33.4 | 49.9 | 9 | 7.6 | 29670 | 14,500 | 41 | 37 | 55 | 5 |
Sample A | Sample B | |||
---|---|---|---|---|
# of the Brine. | G′ (Pa) | Complex µ (mPa.s) | G′ (Pa) | Complex µ (mPa.s) |
DW | 7.109 | 1179.600 | 1.03 × 10−3 | 20.730 |
Brine 1 | 5.435 | 963.970 | 1.50 × 10−5 | 30.149 |
Brine 2 | 27.868 | 4410.700 | 1.39 × 10−5 | 27.879 |
Brine 3 | 13.802 | 2216.200 | 1.16 × 10−5 | 23.332 |
Brine 4 | 10.045 | 1624.900 | 1.32 × 10−5 | 26.446 |
Brine 5 | 6.413 | 1144.300 | 1.27 × 10−5 | 25.475 |
Brine 6 | 14.943 | 2702.900 | 1.34 × 10−5 | 26.870 |
Brine 7 | 12.984 | 1918.700 | 1.71 × 10−5 | 24.418 |
Brine 8 | 1.910 | 348.480 | 2.29 × 10−5 | 45.919 |
Brine 9 | 5.794 | 1101.200 | 1.32 × 10−5 | 26.487 |
Brine 10 | 4.146 | 953.660 | 1.37 × 10−5 | 27.510 |
Sample A | Sample B | |
---|---|---|
IFT reduction | Brine 6 and Brine 8 | Brine 4, Brine 9, and Brine 10 |
Microemulsion generation | Brine 8, Brine 9, and Brine 10 | Brine 7, Brine 8, and Brine 9 |
G′increase | Brine 2, Brine 3, Brine 5, Brine 6, Brine 8, and Brine 9 | Brine 5 and Brine 8 |
Best brine | Brine 8 | Brine 8 and Brine 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villero-Mandon, J.; Pourafshary, P.; Riazi, M. Oil/Brine Screening for Improved Fluid/Fluid Interactions during Low-Salinity Water Flooding. Colloids Interfaces 2024, 8, 23. https://doi.org/10.3390/colloids8020023
Villero-Mandon J, Pourafshary P, Riazi M. Oil/Brine Screening for Improved Fluid/Fluid Interactions during Low-Salinity Water Flooding. Colloids and Interfaces. 2024; 8(2):23. https://doi.org/10.3390/colloids8020023
Chicago/Turabian StyleVillero-Mandon, Jose, Peyman Pourafshary, and Masoud Riazi. 2024. "Oil/Brine Screening for Improved Fluid/Fluid Interactions during Low-Salinity Water Flooding" Colloids and Interfaces 8, no. 2: 23. https://doi.org/10.3390/colloids8020023
APA StyleVillero-Mandon, J., Pourafshary, P., & Riazi, M. (2024). Oil/Brine Screening for Improved Fluid/Fluid Interactions during Low-Salinity Water Flooding. Colloids and Interfaces, 8(2), 23. https://doi.org/10.3390/colloids8020023