Triazine 2D Nanosheets as a New Class of Nanomaterials: Crystallinity, Properties and Applications
Abstract
:1. Introduction
2. Dependence of Crystallinity, Specific Surface Area and Porosity of Ctf on Synthetic Conditions
2.1. Crystallinity via CTF Synthesized in ZnCl2 Melt
2.1.1. Standard Conditions
2.1.2. Crystallinity via CTFs Formation of Nanolayers at Various Temperatures
2.1.3. Crystallinity via the Fabrication of Nanolayers at High Temperature
2.2. CTFs with a System of Conjugated Bonds
2.2.1. Crystallinity via the Synthesis of CTFs in ZnCl2
2.2.2. Crystallinity via Polymerization of 1,4-Dicyanobenzene in Sulfonic Acids
2.2.3. Other Dinitriles
2.3. Crystallinity via Condensation of Amines with Aldehydes
2.3.1. Frameworks with Conjugated Bonds
2.3.2. Frameworks without Conjugated Bonds
2.4. Crystallinity via Other Methods of CTF Synthesis
2.5. Crystallinity of CTFs as a Measure of Thermodynamic/Kinetic Control
3. CTF Applications
3.1. Sorption Properties of Triazine Polymers
3.2. Catalysis
3.3. Materials for Electrodes
3.4. Membranes
3.5. Medical Applications
3.6. Electrotechnical Applications
4. Conclusions
Funding
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef]
- Aslanov, L.A.; Dunaev, S.F. Exfoliation of crystals. Russ. Chem. Rev. 2018, 87, 882–903. [Google Scholar] [CrossRef]
- Aslanov, L.A.; Fetisov, G.V.; Paseshnichenko, K.A.; Dunaev, S.F. Liquid phase methods for design and engineering of two-dimensional nanocrystals. Coord. Chem. Rev. 2017, 352, 220–248. [Google Scholar] [CrossRef]
- Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 2008, 47, 3450–3453. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Chen, Z.; Belmabkhout, Y.; Adil, K.; Bhatt, P.M.; Solovyeva, V.A.; Shekhah, O.; Eddaoudi, M. Carbonization of covalent triazine-based frameworks via ionic liquid induction. J. Mater. Chem. A 2018, 6, 15564–15568. [Google Scholar] [CrossRef] [Green Version]
- Siebels, M.; Schlüsener, C.; Thomas, J.; Xiao, Y.-X.; Yang, X.-Y.; Janiak, C. Rhodium nanoparticles supported on covalent triazine-based frameworks as re-usable catalyst for benzene hydrogenation and hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 11934–11943. [Google Scholar] [CrossRef]
- Bhunia, A.; Dey, S.; Bous, M.; Zhang, C.; Rybinski, W.; Janiak, C. High adsorptive properties of covalent triazine-based frameworks (CTFs) for surfactants from aqueous solution. Chem. Commun. 2015, 51, 484–486. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Shi, S.; Wang, X.; Zhao, L.; Zhu, G.; Liu, M.; Gao, J.; Xu, J. Covalent triazine frameworks as metal free catalysts for the oxidative coupling of amines to imines. ChemistrySelect 2019, 4, 5073–5080. [Google Scholar] [CrossRef]
- Tuci, G.; Iemhoff, A.; Ba, H.; Luconi, L.; Rossin, A.; Papaefthimiou, V.; Palkovits, R.; Artz, J.; Pham-Huu, C.; Giambastiani, G. Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance. Beilstein J. Nanotechnol. 2019, 10, 1217–1227. [Google Scholar] [CrossRef]
- Schwinghammer, K.; Hug, S.; Mesch, M.B.; Senker, J.; Lotsch, B.V. Phenyl-triazine oligomers for light-driven hydrogen evolution. Energy Environ. Sci. 2015, 8, 3345–3353. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, L.; He, T.; Wu, G.; Chen, P. Synthesis of two-dimensional microporous carbonaceous polymer nanosheets and their application as high-performance CO2 capture sorbent. Chem. Asian J. 2016, 11, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Ning, J.; Luo, B.; Wang, B.; Zhang, Y.; Tang, Z.; Yang, J.; Thomas, A.; Zhi, L. Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. J. Am. Chem. Soc. 2015, 137, 219–225. [Google Scholar] [CrossRef]
- Xu, R.; Wang, X.-S.; Zhao, H.; Lin, H.; Huang, Y.-B.; Cao, R. Rhenium-modified porous covalent triazine framework for highly efficient photocatalytic carbon dioxide. Catal. Sci. Technol. 2018, 8, 2224–2230. [Google Scholar] [CrossRef]
- Iwase, K.; Yoshioka, T.; Nakanishi, S.; Hashimoto, K.; Kamiya, K. Copper-modified covalent triazine frameworks as non-noble-metal electrocatalysts for oxygen reduction. Angew. Chem. Int. Ed. 2015, 54, 11068–11072. [Google Scholar] [CrossRef] [PubMed]
- Soorholtz, M.; Jones, L.C.; Samuelis, D.; Weidenthaler, C.; White, R.J.; Titirici, M.-M.; Cullen, D.A.; Zimmermann, T.; Antonietti, M.; Maier, J.; et al. Local platinum environments in a solid analogue of the molecular periana catalyst. ACS Catal. 2016, 6, 2332–2340. [Google Scholar] [CrossRef]
- Chang, F.; Guo, J.; Wu, G.; Liu, L.; Zhang, M.; He, T.; Wang, P.; Yu, P.; Chen, P. Covalent triazine-based framework as an efficient catalyst support for ammonia decomposition. RSC Adv. 2015, 5, 3605–3610. [Google Scholar] [CrossRef]
- Artz, J.; Palkovits, R. Base-Free Aqueous-Phase Oxidation of 5-Hydroxymethylfurfural over Ruthenium Catalysts Supported on Covalent Triazine Frameworks. ChemSusChem 2015, 8, 3832–3838. [Google Scholar] [CrossRef]
- Artz, J.; Mallmann, S.; Palkovits, R. Selective aerobic oxidation of HMF to 2,5-diformylfuran on covalent triazine frameworks-supported Ru catalysts. ChemSusChem 2015, 8, 672–679. [Google Scholar] [CrossRef]
- Wang, D.-G.; Wang, H.; Lin, Y.; Yu, G.; Song, M.; Zhong, W.; Kuang, G.-C. Synthesis and morphology evolution of ultrahigh content nitrogen-doped, micropore-dominated carbon materials as high-performance supercapacitors. ChemSusChem 2018, 11, 3932–3940. [Google Scholar] [CrossRef]
- Wang, K.K.; Huang, H.L.; Liu, D.H.; Wang, C.; Li, J.P.; Zhong, C.L. Covalent triazine-based frameworks with ultramicropores and high nitrogen contents for highly selective CO2 capture. Environ. Sci. Technol. 2016, 50, 4869–4876. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Wang, G.; Li, Y.; Wen, Z. Perfluorinated covalent triazine framework derived hybrids for the highly selective electroconversion of carbon dioxide into methane. Angew. Chem. Int. Ed. 2018, 57, 13120–13124. [Google Scholar] [CrossRef] [PubMed]
- Gunasekar, G.H.; Jung, K.-D.; Yoon, S. Hydrogenation of CO2 to formate using a simple, recyclable, and efficient heterogeneous catalyst. Inorg. Chem. 2019, 58, 3717–3723. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Gunasekar, G.H.; Prakash, N.; Jung, K.-D.; Yoon, S. A highly efficient heterogenized iridium complex for the catalytic hydrogenation of carbon dioxide to formate. ChemSusChem 2015, 8, 3410–3413. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, S.; Liu, X.; Li, P.; Sun, L.; Yang, R.; Wang, S.; Wu, Z.-S.; Bao, X.; Deng, W.-Q. Conductive microporous covalent triazine-based framework for high-performance electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 2018, 57, 7992–7996. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; He, J.; Chen, Y.; Wang, H.; Zhao, Y.; Han, Y.; Ding, Y. Effective acetylene/ethylene separation at ambient conditions by a pigment-based covalent-triazine framework. Macromol. Rapid Commun. 2018, 39, 1700468. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Z.; Fu, X.; Yan, J.; Liu, C.; Pan, C.; Yu, G. Acid/hydrazide-appended covalent triazine frameworks for low-pressure CO2 capture: Pre-designable or post-synthesis modification. J. Mater. Chem. A 2017, 5, 21266–21274. [Google Scholar] [CrossRef]
- Zhu, X.; Tian, C.; Veith, G.M.; Abney, C.W.; Dehaudt, J.; Dai, S. In situ doping strategy for the preparation of conjugated triazine frameworks displaying efficient CO2 capture performance. J. Am. Chem. Soc. 2016, 138, 11497–11500. [Google Scholar] [CrossRef]
- Tao, L.M.; Niu, F.; Wang, C.; Liu, J.G.; Wang, T.M.; Wang, Q.H. Benzimidazole functionalized covalent triazine frameworks for CO2 capture. J. Mater. Chem. A 2016, 4, 11812–11820. [Google Scholar] [CrossRef]
- Yuan, K.Y.; Liu, C.; Han, J.H.; Yu, G.P.; Wang, J.Y.; Duan, H.M.; Wang, Z.G.; Jian, X.G. Phthalazinone structure-based covalent triazine frameworks and their gas adsorption and separation properties. RSC Adv. 2016, 6, 12009–12020. [Google Scholar] [CrossRef]
- Jiao, L.; Hu, Y.; Ju, H.; Wang, C.; Gao, M.-R.; Yang, Q.; Zhu, J.; Yu, S.-H.; Jiang, H.-L. From covalent triazine-based frameworks to N-doped porous carbon/reduced graphene oxide nanosheets: Efficient electrocatalysts for oxygen reduction. J. Mater. Chem. A 2017, 5, 23170–23178. [Google Scholar] [CrossRef]
- Hug, S.; Stegbauer, L.; Oh, H.; Hirscher, M.; Lotsch, B.V. Nitrogen-rich covalent triazine frameworks as high-performance platforms for selective carbon capture and storage. Chem. Mater. 2015, 27, 8001–8010. [Google Scholar] [CrossRef]
- Bavykina, A.V.; Goesten, M.G.; Kapteijn, F.; Makkee, M.; Gascon, J. Efficient production of hydrogen from formic acid using a covalent triazine framework supported molecular catalyst. ChemSusChem 2015, 8, 809–812. [Google Scholar] [CrossRef] [PubMed]
- Krishnaraj, C.; Jena, H.S.; Leus, K.; Freeman, H.M.; Benning, L.G.; Van Der Voort, P. An aliphatic hexene-covalent triazine framework for selective acetylene/methane and ethylene/methane separation. J. Mater. Chem. A 2019, 7, 13188–13196. [Google Scholar] [CrossRef]
- Tao, L.M.; Niu, F.; Liu, J.G.; Wang, T.M.; Wang, Q.H. Troger’s base functionalized covalent triazine frameworks for CO2 capture. RSC Adv. 2016, 6, 94365–94372. [Google Scholar] [CrossRef]
- Gu, C.; Liu, D.; Huang, W.; Liu, J.; Yang, R. Synthesis of covalent triazine-based frameworks with high CO2 adsorption and selectivity. Polym. Chem. 2015, 6, 7410–7417. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.; Liu, J.; Zhang, J.; Xu, D.; Peng, W.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. Efficient electrocatalyst for the hydrogen evolution reaction derived from polyoxotungstate/polypyrrole/graphene. ChemSusChem 2018, 11, 2402–2407. [Google Scholar] [CrossRef]
- Bi, J.; Fang, W.; Li, L.; Wang, J.; Liang, S.; He, Y.; Liu, M.; Wu, L. Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water. Macromol. Rapid Commun. 2015, 36, 1799–1805. [Google Scholar] [CrossRef]
- Lan, Z.-A.; Fang, Y.; Zhang, Y.; Wang, X. Photocatalytic Oxygen Evolution from Functional Triazine-Based Polymers with Tunable Band Structures. Angew. Chem. Int. Ed. 2018, 57, 470–474. [Google Scholar] [CrossRef]
- Liu, J.; Zan, W.; Li, K.; Yang, Y.; Bu, F.; Xu, Y. Solution Synthesis of Semiconducting Two-Dimensional Polymer via Trimerization of Carbonitrile. J. Am. Chem. Soc. 2017, 139, 11666–11669. [Google Scholar] [CrossRef]
- Yu, S.; Xu, Y.; Jiang, J.; Ren, S. Room temperature synthesis and substituent effect study of fluorene-based covalent triazine-based frameworks. Acta Chim. Sin. 2015, 73, 629–633. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.F.; Liu, C.B.; Huang, Y.; Hu, Y.C.; Zhang, B. Covalent triazine framework-supported palladium as a ligand-free catalyst for the selective double carbonylation of aryl iodides under ambient pressure of CO. Chem. Commun. 2016, 52, 2960–2963. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Byun, J.; Rçrich, I.; Ramanan, C.; Blom, P.W.M.; Lu, H.; Wang, D.; Silva, L.C.; Li, R.; Wang, L.; et al. Asymmetric Covalent Triazine Framework for Enhanced Visible-Light Photoredox Catalysis via Energy Transfer Cascade. Angew. Chem. Int. Ed. 2018, 57, 8316–8320. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wang, Z.J.; Ma, B.C.; Ghasimi, S.; Gehrig, D.; Laquai, F.; Landfester, K.; Zhang, K.A.J. Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity. J. Mater. Chem. 2016, 4, 7555–7559. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Zhang, C.; Zhao, Y.; Ren, S.J.; Jiang, J.X. Synthetic control and multifunctional properties of fluorescent covalent triazine-based frameworks. Macromol. Rapid Commun. 2016, 37, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Puthiaraj, P.; Lee, Y.R.; Zhang, S.Q.; Ahn, W.S. Triazine-based covalent organic polymers: Design, synthesis and applications in heterogeneous catalysis. J. Mater. Chem. A 2016, 4, 16288–16311. [Google Scholar] [CrossRef]
- Karmakar, A.; Kumar, A.; Chaudhari, A.K.; Samanta, P.; Desai, A.V.; Krishna, R.; Ghosh, S.K. Bimodal functionality in a porous covalent triazine framework by rational integration of an electron-rich and -deficient pore surface. Chem. Eur. J. 2016, 22, 4931–4937. [Google Scholar] [CrossRef]
- Kuecken, S.; Schmidt, J.; Zhi, L.; Thomas, A. Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: A facile synthesis route for covalent triazine frameworks. J. Mater. Chem. A 2015, 3, 24422–24427. [Google Scholar] [CrossRef] [Green Version]
- Kaleeswaran, D.; Antony, R.; Sharma, A.; Malani, A.; Murugavel, R. Catalysis and CO2 capture by palladium-incorporated covalent organic frameworks. ChemPlusChem 2017, 82, 1253–1265. [Google Scholar] [CrossRef]
- Gomes, R.; Bhanja, P.; Bhaumik, A. A triazine-based covalent organic polymer for efficient CO2 adsorption. Chem. Commun. 2015, 51, 10050–10053. [Google Scholar] [CrossRef]
- Popp, N.; Homburg, T.; Stock, N.; Senker, J. Porous imine-based networks with protonated imine linkages for carbon dioxide separation from mixtures with nitrogen and methane. J. Mater. Chem. A 2015, 3, 18492–18504. [Google Scholar] [CrossRef]
- Wu, S.; Gu, S.; Zhang, A.; Yu, G.; Wang, Z.; Jian, J.; Pan, C. A rational construction of microporous imide-bridged covalent–organic polytriazines for high-enthalpy small gas absorption. J. Mater. Chem. A 2015, 3, 878–885. [Google Scholar] [CrossRef]
- Halder, A.; Kandambeth, S.; Biswal, B.P.; Kaur, G.; Roy, N.C.; Addicoat, M.; Salunke, J.K.; Banerjee, S.; Vanka, K.; Heine, T.; et al. Decoding the morphological diversity in two dimensional crystalline porous polymers by core planarity modulation. Angew. Chem. Int. Ed. 2016, 55, 7806–7810. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.; Bhaumik, A. A new triazine functionalized luminescent covalent organic framework for nitroaromatic sensing and CO2 storage. RSC Adv. 2016, 6, 28047–28054. [Google Scholar] [CrossRef]
- Sadhasivam, V.; Balasaravanan, R.; Chithiraikumar, C.; Siva, A. Incorporating Pd(OAc)2 on imine functionalized microporous covalent organic frameworks: A stable and efficient heterogeneous catalyst for Suzuki-Miyaura coupling in aqueous medium. ChemistrySelect 2017, 2, 1063–1070. [Google Scholar] [CrossRef]
- Fan, X.; Tian, R.; Liu, S.; Qiao, S.; Luo, Q.; Yan, T.; Fu, S.; Zhang, X.; Xu, J.; Liu, J. Covalently assembled polymer nanocapsules: A novel scaffold for light-harvesting. Polym. Chem. 2018, 9, 1160–1163. [Google Scholar] [CrossRef]
- Das, S.K.; Mishra, S.; Manna, K.; Kayal, U.; Mahapatra, S.; Saha, K.D.; Dalapati, S.; Das, G.P.; Mostafa, A.A.; Bhaumik, A. A new triazine based π-conjugated mesoporous 2D covalent organic framework: Its in vitro anticancer activities. Chem. Commun. 2018, 54, 11475–11478. [Google Scholar]
- Sasmal, H.S.; Aiyappa, H.B.; Bhange, S.N.; Karak, S.; Halder, A.; Kurungot, S.; Banerjee, R. Superprotonic conductivity in flexible porous covalent organic framework membranes. Angew. Chem. Int. Ed. 2018, 57, 10894–10898. [Google Scholar] [CrossRef]
- Guo, L.; Niu, Y.; Xu, H.; Li, Q.; Razzaque, S.; Huang, Q.; Jin, S.; Tan, B. Engineering heteroatoms with atomic precision in donor–acceptor covalent triazine frameworks to boost photocatalytic hydrogen production. J. Mater. Chem. A 2018, 6, 19775–19781. [Google Scholar] [CrossRef]
- Xu, N.; Wang, R.-L.; Li, D.-P.; Meng, X.; Mu, J.-L.; Zhou, Z.-Y.; Su, Z.-M. A new triazine-based covalent organic polymer for efficient photodegradation of both acidic and basic dyes under visible light. Dalton Trans. 2018, 47, 4191–4197. [Google Scholar] [CrossRef]
- Zhang, M.; Zheng, R.; Ma, Y.; Chen, R.; Sun, X. N-rich covalent organic frameworks with different pore size for high-pressure CO2 adsorption. Microporous Mesoporous Mater. 2019, 285, 70–79. [Google Scholar] [CrossRef]
- Bhadra, M.; Kandambeth, S.; Sahoo, M.K.; Addicoat, M.; Balaraman, E.; Banerjee, R. Triazine Functionalized Porous Covalent Organic Framework for Photo-organocatalytic E–Z Isomerization of Olefins. J. Am. Chem. Soc. 2019, 141, 6152–6156. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, L.; Wu, Y.; Wu, T.; Wu, H.; Cai, Q.; Xu, Y.; Zeng, B.; Yuan, C.; Dai, L. Facile synthesis of nitrogen-doped carbon materials with hierarchical porous structures for high-performance supercapacitors in both acidic and alkaline electrolytes. J. Mater. Chem. A 2019, 7, 13154–13163. [Google Scholar] [CrossRef]
- El-Mahdy, A.F.M.; Hung, Y.-H.; Mansoure, T.H.; Yu, H.-H.; Chen, T.; Kuo, S.-W. A hollow microtubular triazine- and benzobisoxazole-based covalent organic framework presenting sponge-like shells that functions as a high-performance supercapacitor. Chem. Asian J. 2019, 14, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-Y.; Mahmood, J.; Noh, H.-J.; Seo, J.-M.; Jung, S.-M.; Shin, S.-H.; Im, Y.-K.; Jeon, I.-Y.; Baek, J.-B. Direct synthesis of a covalent triazine-based framework from aromatic amides. Angew. Chem. Int. Ed. 2018, 57, 8438–8442. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Addicoat, M.; Jin, E.; Xu, H.; Hayashi, T.; Xu, F.; Huang, N.; Irle, S.; Jiang, D. Designed synthesis of double-stage two-dimensional covalent organic frameworks. Sci. Rep. 2015, 5, 14650. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Weber, J.; Faul, C.F.J. Fluorescent microporous polyimides based on perylene and triazine for highly CO2-selective carbon materials. Macromolecules 2015, 48, 2064–2073. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.T.; Zhou, J.Y.; Xu, R.F.; Liu, S.P.; Wang, Y.K.; Li, P.; Wu, W.T.; Wu, M.B. Synthesis of three dimensional extended conjugated polyimide and application as sodium-ion battery anode. Chem. Eng. J. 2016, 287, 516–522. [Google Scholar] [CrossRef]
- Chen, X.; Addicoat, M.; Jin, E.; Zhai, L.; Xu, H.; Huang, N.; Guo, Z.; Liu, L.; Irle, S.; Jiang, D. Locking covalent organic frameworks with hydrogen bonds: General and remarkable effects on crystalline structure, physical properties, and photochemical activity. J. Am. Chem. Soc. 2015, 137, 3241–3247. [Google Scholar] [CrossRef]
- Puthiaraj, P.; Yu, K.; Shim, S.E.; Ahn, W.-S. Pd(II)-immobilized on a nanoporous triazine-based covalent imine framework for facile cyanation of haloarenes with K4Fe(CN)6. Mol. Catal. 2019, 473, 110395. [Google Scholar] [CrossRef]
- Lin, S.; Hou, Y.; Deng, X.; Wang, H.; Sun, S.; Zhang, X. A triazine-based covalent organic framework/palladium hybrid for one-pot silicon-based cross-coupling of silanes and aryl iodides. RSC Adv. 2015, 5, 41017–41024. [Google Scholar] [CrossRef]
- Xu, L.Q.; Ding, S.Y.; Liu, J.M.; Sun, J.L.; Wang, W.; Zheng, Q.Y. Highly crystalline covalent organic frameworks from flexible building blocks. Chem. Commun. 2016, 52, 4706–4709. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Wang, X.; Ostwal, M.M.; Lai, Z. A highly stable microporous covalent imine network adsorbent for natural gas upgrading and flue gas CO2 capture. Sep. Purif. Technol. 2016, 170, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Puthiaraj, P.; Ahn, W.-S.J. Facile synthesis of microporous carbonaceous materials derived from a covalent triazine polymer for CO2 capture. Energy Chem. 2017, 26, 965–971. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Liu, J.; Liu, Y.; Lyu, Y.J. Porphyrin-based covalent triazine frameworks: Porosity, adsorption performance, and drug delivery. Polym. Sci. Part A Polym. Chem. 2017, 55, 2594–2600. [Google Scholar] [CrossRef]
- Puthiaraj, P.; Ahn, W.S. Synthesis of copper nanoparticles supported on a microporous covalent triazine polymer: An efficient and reusable catalyst for O-arylation reaction. Catal. Sci. Technol. 2016, 6, 1701–1709. [Google Scholar] [CrossRef]
- Yang, W.; Wu, X.; Liu, T.; Wang, T.; Hou, X. A triazine-based conjugated microporous polymer composite for magnetic solid phase extraction of 5-nitroimidazoles coupled with UPLC-MS/MS for quantification. Analyst 2018, 143, 5744–5753. [Google Scholar] [CrossRef]
- Dong, Y.Z.; Kwon, S.H.; Choi, H.J.; Puthiaraj, P.; Ahn, W.-S. Electrorheological response of microporous covalent triazine-based polymeric particles. Colloid Polym. Sci. 2018, 296, 907–915. [Google Scholar] [CrossRef]
- Ravi, S.; Puthiaraj, P.; Park, D.-W.; Ahn, W.-S. Cycloaddition of CO2 and epoxides over a porous covalent triazine-based polymer incorporated with Fe3O4. New J. Chem. 2018, 42, 12429–12436. [Google Scholar] [CrossRef]
- Zhao, W.; Zuo, H.; Guo, Y.; Liu, K.; Wang, S.; He, L.; Jiang, X.; Xiang, G.; Zhang, S. Porous covalent triazine-terphenyl polymer as hydrophilic-lipophilic balanced sorbent for solid phase extraction of tetracyclines in animal derived foods. Talanta 2019, 201, 426–432. [Google Scholar] [CrossRef]
- Geng, T.; Zhang, W.; Zhu, Z.; Kai, X. Triazine-based conjugated microporous polymers constructing triphenylamine and its derivatives with nitrogen as core for iodine adsorption and fluorescence sensing I2. Microporous Mesoporous Mater. 2019, 273, 163–170. [Google Scholar] [CrossRef]
- Rengaraj, A.; Puthiaraj, P.; Haldorai, Y.; Heo, N.S.; Hwang, S.K.; Han, Y.K.; Kwon, S.; Ahn, W.S.; Huh, Y.S. Porous covalent triazine polymer as a potential nanocargo for cancer therapy and imaging. ACS Appl. Mater. Interfaces 2016, 8, 8947–8955. [Google Scholar] [CrossRef]
- Shao, L.; Wang, S.; Liu, M.; Huang, J.; Liu, Y.-N. Triazine-based hyper-cross-linked polymers derived porous carbons for CO2 capture. Chem. Eng. J. 2018, 339, 509–518. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, Y.; Gu, S.; Zhu, Y.; Yu, G.; Pan, C.; Wang, Z.; Hu, Y. Metal microporous aromatic polymers with improved performance for small gas storage. Chem. Eur. J. 2015, 21, 13357–13363. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, M.; Muhammad, R.; Ramachandran, C.N.; Mohanty, P. Nitrogen amelioration-driven carbon dioxide capture by nanoporous polytriazine. Langmuir 2019, 35, 4893–4901. [Google Scholar] [CrossRef]
- Lee, S.-P.; Mellon, N.; Shariff, A.M.; Leveque, J.-M. Geometry variation in porous covalent triazine polymer (CTP) for CO2 adsorption. New J. Chem. 2018, 42, 15488–15496. [Google Scholar] [CrossRef]
- Xiong, S.; Tao, J.; Wang, Y.; Tang, J.; Liu, C.; Liu, Q.; Wang, Y.; Yu, G.; Pan, C. Uniform poly(phosphazene–triazine) porous microspheres for highly efficient iodine removal. Chem. Commun. 2018, 54, 8450–8453. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Huang, W.; Silva, L.C.; Zhang, K.A.I.; Wang, X. Functional conjugated polymers for CO2 reduction using visible light. Chem. Eur. J. 2018, 24, 17454–17458. [Google Scholar] [CrossRef]
- Wang, J.; Harrison, M. Removal of organic micro-pollutants from water by β-cyclodextrin triazine polymers. J. Incl. Phenom. Macrocycl. Chem. 2018, 92, 347–356. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, H.; Wu, C.; Zhang, Z.; Pan, Q.; Hu, F.; Wang, R.; Li, P.; Huang, X.; Li, Z. Fully conjugated two-dimensional sp2-carbon covalent organic frameworks as artificial photosystem|I with high efficiency. Angew. Chem. Int. Ed. 2019, 58, 5376–5381. [Google Scholar] [CrossRef]
- Song, J.-R.; Duan, W.-G.; Li, D.-P. Synthesis of nitrogen-rich polymers by click polymerization reaction and gas sorption property. Molecules 2018, 23, 1732. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Rahmanudin, A.; Jeanbourquin, X.A.; Yu, X.; Johnson, M.; Guijarro, N.; Sekar, A.; Sivula, K. Catalyst-free, fast, and tunable synthesis for robust covalent polymer network semiconducting thin films. Adv. Funct. Mater. 2018, 28, 1706303. [Google Scholar] [CrossRef]
- Kim, M.-S.; Phang, C.S.; Jeong, Y.K.; Park, J.K. A facile synthetic route for the morphology-controlled formation of triazine-based covalent organic nanosheets (CONs). Polym. Chem. 2017, 8, 5655–5659. [Google Scholar] [CrossRef]
- Li, Z.; Han, Y.; Guo, Y.; Xu, S.; Chen, F.; Ye, L.; Luo, Z.; Liu, X.; Zhou, H.; Zhao, T. Evolution of the formation of a covalent triazine-based framework catalyzed by p-toluenesulfonic acid monohydrate. RSC Adv. 2017, 7, 45818–45823. [Google Scholar] [CrossRef] [Green Version]
- Rehman, A.; Park, S.-J. Preparation and characterization of polyamides and nitrogen-doped carbons for enhanced CO2 capture. Bull. Korean Chem. Soc. 2017, 38, 1285–1292. [Google Scholar] [CrossRef]
- Yadav, R.K.; Kumar, A.; Park, N.J.; Kong, K.J.; Baeg, J.O. A highly efficient covalent organic framework film photocatalyst for selective solar fuel production from CO2. J. Mater. Chem. A 2016, 4, 9413–9418. [Google Scholar] [CrossRef]
- Nandi, S.; Werner-Zwanziger, U.; Vaidhyanathan, R. A triazine–resorcinol based porous polymer with polar pores and exceptional surface hydrophobicity showing CO2 uptake under humid conditions. J. Mater. Chem. A 2015, 3, 21116–21122. [Google Scholar] [CrossRef] [Green Version]
- Talapaneni, S.N.; Hwang, T.H.; Je, S.H.; Buyukcakir, O.; Choi, J.W.; Coskun, A. Elemental-sulfur-mediated facile synthesis of a covalent triazine framework for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 2016, 55, 3106–3111. [Google Scholar] [CrossRef]
- Je, S.H.; Kim, H.J.; Kim, J.; Choi, J.W.; Coskun, A. Perfluoroaryl-elemental sulfur SNAr chemistry in covalent triazine frameworks with high sulfur contents for lithium–sulfur batteries. Adv. Funct. Mater. 2017, 27, 1703947. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Y.; Cao, J. Covalent triazine-based frameworks as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. Catal. Commun. 2015, 66, 91–94. [Google Scholar] [CrossRef]
- Wang, B.; Lee, L.S.; Wei, C.; Fu, H.; Zheng, S.; Xu, Z.; Zhu, D. Covalent triazine-based framework: A promising adsorbent for removal of perfluoroalkyl acids from aqueous solution. Environ. Pollut. 2016, 216, 884–892. [Google Scholar] [CrossRef]
- He, T.; Liu, L.; Wu, G.; Chen, P. Covalent triazine framework-supported palladium nanoparticles for catalytic hydrogenation of N-heterocycles. J. Mater. Chem. A 2015, 3, 16235–16241. [Google Scholar] [CrossRef]
- Zhong, C.; He, M.; Liao, H.; Chen, B.; Wang, C.; Hu, B. Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples. J. Chromatogr. A 2016, 1441, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.P.; Liu, D.H.; Ma, J.; Tong, M.M.; Zhang, W.X.; Huang, H.L.; Zhong, Q.Y.; Zhong, C.L. A GO-assisted method for the preparation of ultrathin covalent organic framework membranes for gas separation. J. Mater. Chem. A 2016, 4, 13444–13449. [Google Scholar] [CrossRef]
- Zuo, Q.; Zhao, P.P.; Luo, W.; Cheng, G.Z. Hierarchically porous Fe–N–C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction. Nanoscale 2016, 8, 14271–14277. [Google Scholar] [CrossRef]
- Liu, J.; Lyu, P.; Zhang, Y.; Nachtigall, P.; Xu, Y. New layered triazine framework/exfoliated 2D polymer with superior sodium-storage properties. Adv. Mater. 2018, 30, 1705401. [Google Scholar] [CrossRef]
- Li, L.Y.; Fang, W.; Zhang, P.; Bi, J.H.; He, Y.H.; Wang, J.Y.; Su, W.Y. Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. A 2016, 4, 12402–12406. [Google Scholar] [CrossRef]
- Puthiaraj, P.; Cho, S.-M.; Lee, Y.-R.; Ahn, W.-S. Microporous covalent triazine polymers: Efficient Friedel–Crafts synthesis and adsorption/storage of CO2 and CH4. J. Mater. Chem. A 2015, 3, 6792–6797. [Google Scholar] [CrossRef]
- He, X.; Zhang, S.-Y.; Tang, X.; Xiong, S.; Ai, C.; Chen, D.; Tang, J.; Pan, C.; Yu, G. Exploration of 1D channels in stable and high-surface-area covalent triazine polymers for effective iodine removal. Chem. Eng. J. 2019, 371, 314–318. [Google Scholar] [CrossRef]
- Mane, S.; Gao, Z.-Y.; Li, Y.-X.; Xue, D.-M.; Liu, X.-Q.; Sun, L.-B. Fabrication of microporous polymers for selective CO2 capture: The significant role of crosslinking and crosslinker length. J. Mater. Chem. A 2017, 5, 23310–23318. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, P.; Zhao, J. 2D covalent triazine framework: A new class of organic photocatalyst for water splitting. J. Mater. Chem. A 2015, 3, 7750–7758. [Google Scholar] [CrossRef]
- Guiglion, P.; Butchosa, C.; Zwijnenburg, M.A. Polymer Photocatalysts for Water Splitting: Insights from Computational Modeling. Macromol. Chem. Phys. 2016, 217, 344–353. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Yang, L.-M.; Wang, X.; Guo, L.; Cheng, G.; Zhang, C.; Jin, S.; Tan, B.; Cooper, A. Covalent Triazine Frameworks via a Low-Temperature Polycondensation ApproachAngew. Chem. Int. Ed. 2017, 56, 14149–14153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, J.Q.; Liu, Y.X.; Su, Y.Z.; Liu, P.; Zhuang, X.D.; Wu, D.Q.; Zhang, F.; Feng, X.L. Graphene-directed two-dimensional porous carbon frameworks for high-performance lithium–sulfur battery cathodes. J. Mater. Chem. A 2016, 4, 314–320. [Google Scholar] [CrossRef] [Green Version]
- Yuan, R.; Kang, W.; Zhang, C. Rational design of porous covalent triazine-based framework composites as advanced organic lithium-ion battery cathodes. Materials 2018, 11, 937. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zhuang, X.; Yang, J.; Feng, X.; Hirano, S.-I. Graphene-coupled nitrogen-enriched porous carbon nanosheets for energy storage. J. Mater. Chem. A 2017, 5, 16732–16739. [Google Scholar] [CrossRef]
- Mitra, S.; Kandambeth, S.; Biswal, B.P.; Khayum, M.A.; Choudhury, C.K.; Mehta, M.; Kaur, G.; Banerjee, S.; Prabhune, A.; Verma, S.; et al. Self-Exfoliated Guanidinium-Based Ionic Covalent Organic Nanosheets (iCONs). J. Am. Chem. Soc. 2016, 138, 2823–2828. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, D.H.; Huang, D.L.; Zeng, G.M.; Xu, P.; Lai, C.; Chen, M.; Cheng, M.; Zhang, C.; Wang, Z.W. Covalent triazine frameworks for carbon dioxide capture. J. Mater. Chem. A 2019, 7, 22848–22870. [Google Scholar] [CrossRef]
- Tahir, N.; Krishnaraj, C.; Leus, K.; Van der Voort, P. Development of covalent triazine frameworks as heterogeneous catalytic supports. Polymers 2019, 11, 1326. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.Y.; Guo, L.P.; Jin, S.B.; Tan, B.E. Covalent triazine frameworks: Synthesis and applications. J. Mater. Chem. A 2019, 7, 5153–5172. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, S.B. Recent advancements in the synthesis of cvalent triazine frameworks for energy and environmental applications. Polymers 2019, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- Artz, J. Covalent triazine-based frameworks—Tailor-made catalysts and catalyst supports for molecular and nanoparticulate species. ChemCatChem 2018, 10, 1753–1771. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, K.; Wang, E. Kinetic paths, time scale, and underlying landscapes: A path integral framework to study global natures of nonequilibrium systems and networks. J. Chem. Phys. 2010, 133, 125103. [Google Scholar] [CrossRef]
- Cheetham, A.K.; Kieslich, G.; Yeung, H.H.-M. Thermodynamic and kinetic effects in the crystallization of metal–organic frameworks. Acc. Chem. Res. 2018, 51, 659–667. [Google Scholar] [CrossRef]
- Ji, Q.; Lirag, R.C.; Miljanic, O.S. Kinetically controlled phenomena in dynamic combinatorial libraries. Chem. Soc. Rev. 2014, 43, 1873–1884. [Google Scholar] [CrossRef]
- Janica, I.; Patroniak, V.; Samor, P.; Ciesielski, A. Imine-based architectures at surfaces and interfaces: From self-assembly to dynamic covalent chemistry in 2D. Chem. Asian J. 2018, 13, 465–481. [Google Scholar] [CrossRef] [Green Version]
- Yuan, K.; Hu, T.; Xu, Y.; Graf, R.; Shi, L.; Forster, M.; Pichler, T.; Riedl, T.; Chen, Y.; Scherf, U. Nitrogen-doped porous carbon/graphene nanosheets derived from two-dimensional conjugated microporous polymer sandwiches with promising capacitive performance. Mater. Chem. Front. 2017, 1, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Ohtsu, H.; Kawano, M. Kinetic assembly of coordination networks. Chem. Commun. 2017, 53, 8818–8829. [Google Scholar] [CrossRef]
- Cheetham, A.K.; Rao, C.N.; Feller, R.F. Structural diversity and chemical trends in hybrid inorganic–organic framework materials. Chem. Commun. 2006, 46, 4780–4795. [Google Scholar] [CrossRef]
- Kawano, M.; Haneda, T.; Hashizume, D.; Izumi, F.; Fujita, M. A selective instant synthesis of a coordination network and its ab initio powder structure determination. Angew. Chem. Int. Ed. 2008, 47, 1269–1271. [Google Scholar] [CrossRef]
- Mullin, J.W. Crystallization, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2001; 600p. [Google Scholar]
- Rieger, J.; Frechen, T.; Cox, G.; Heckmann, W.; Schmidt, C.; Thieme, J. Precursor structures in the crystallization/precipitation processes of CaCO3 and control of particle formation by polyelectrolytes. Farad. Discuss. 2007, 136, 265–277. [Google Scholar] [CrossRef]
- Rajagopal, V.; Narayanan, N.J.; Kathiresan, M.; Pattanayak, D.K.; Suryanarayanan, V. Triazine interlinked covalent organic polymer as an efficient anti-bacterial agent. Mater. Today Chem. 2021, 19, 100408. [Google Scholar] [CrossRef]
- Chen, S.; Wang, S.K.; Xue, X.; Zhao, J.S.; Du, H.M. The synthesis of a covalent organic framework from thiophene armed triazine and EDOT and its application as anode material in lithium-ion battery. Polymers 2021, 13, 3300. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Gu, Y.; Shan, Y.; Tian, C.; Yang, L.; Jiang, H.; Liu, H.; Zhu, X.; Dai, S. Dual rate-modulation approach for the preparation of crystalline covalent triazine frameworks displaying efficient sodium storage. ACS Macro Lett. 2022, 11, 60–65. [Google Scholar] [CrossRef]
- Guo, L.P.; Wang, X.P.; Zhan, Z.; Zhao, Y.L.; Chen, L.J.; Liu, T.; Tan, B.E.; Jin, S.B. Crystallization of covalent triazine frameworks via a heterogeneous nucleation approach for efficient photocatalytic applications. Chem. Mater. 2021, 33, 1994–2003. [Google Scholar] [CrossRef]
- Yang, Z.L.; Gu, Y.Y.; Yuan, B.L.; Tian, Y.M.; Shang, J.; Tsang, D.C.W.; Liu, M.X.; Gan, L.H.; Mao, S.; Li, L.C. Thio-groups decorated covalent triazine frameworks for selective mercury removal. J. Hazard. Mater. 2021, 403, 123702. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Cheng, G.; Guo, L.P.; Wang, N.; Tan, B.E.; Jin, S.B. Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting. Angew. Chem. Int. Ed. 2020, 59, 6007–6014. [Google Scholar] [CrossRef]
- Afshari, M.; Dinari, M. Synthesis of new imine-linked covalent organic framework as high efficient absorbent and monitoring the removal of direct fast scarlet 4BS textile dye based on mobile phone colorimetric platform. J. Hazard. Mater. 2020, 385, 121514. [Google Scholar] [CrossRef]
- Mokhtari, N.; Khataei, M.M.; Dinari, M.; Monjezi, B.H.; Yamini, Y. Imine-based covalent triazine framework: Synthesis, characterization, and evaluation its adsorption. Mater. Lett. 2020, 263, 127221. [Google Scholar] [CrossRef]
- Wessely, I.D.; Schade, A.M.; Dey, S.; Bhunia, A.; Nuhnen, A.; Janiak, C.; Brase, S. Covalent triazine frameworks based on the first pseudo-octahedral hexanitrile monomer via nitrile trimerization: Synthesis, porosity, and CO2 gas sorption properties. Materials 2021, 14, 3214. [Google Scholar] [CrossRef]
- Xu, T.T.; Li, Y.; Zhao, Z.Q.; Xing, G.L.; Chen, L. N,N’-Bicarbazol-based covalent triazine frameworks as high-performance heterogeneous photocatalysts. Macromolecules 2019, 52, 9786–9791. [Google Scholar] [CrossRef]
- Gong, R.; Yang, L.; Qiu, S.; Chen, W.T.; Wang, Q.; Xie, J.; Waterhouse, G.I.N.; Xu, J. A Nitrogen-rich covalent triazine framework as a photocatalyst for hydrogen production. Adv. Polym. Technol. 2020, 2020, 7819049. [Google Scholar] [CrossRef]
- Guan, L.J.; Cheng, G.; Tan, B.E.; Jin, S.B. Covalent triazine frameworks constructed via benzyl halide monomers showing high photocatalytic activity in biomass reforming. Chem. Commun. 2021, 57, 5147–5150. [Google Scholar] [CrossRef]
- Wang, G.H.; Zhou, T.; Lei, Y.Q. Exploration of a novel triazine-based covalent organic framework for solid-phase extraction of antibiotics. RSC Adv. 2021, 10, 11557–11564. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, H.T.; Shi, B.Y.; Gao, S.G.; Zhang, L.; Li, X.H.; Liao, X.J.; Huang, K. Room-temperature synthesis of hollow carbazole based covalent triazine polymers with multiactive sites for efficient iodine capture-catalysis cascade application. ASC Appl. Polym. Mater. 2020, 2, 3704–3713. [Google Scholar] [CrossRef]
- EL-Mahdy, A.F.M.; Liu, T.E.; Kuo, S.W. Direct synthesis of nitrogen-doped mesoporous carbons from triazine-functionalized resol for CO2 uptake and highly efficient removal of dyes. J. Hazard. Mater. 2020, 391, 122163. [Google Scholar] [CrossRef]
- Cui, Z.W.; Hu, Y.; Zhang, Y.K.; Han, Q.T.; Wang, Y.; Zhou, Y.; Zou, Z.G. A new triazine-based conjugated polymer from simple monomers with stable photocatalytic hydrogen evolution under visible light. Polymer 2020, 211, 123079. [Google Scholar] [CrossRef]
- Wang, R.; Xi, S.C.; Wang, D.Y.; Dou, M.; Dong, B. Defluorinated porous carbon nanomaterials for CO2 capture. ACS Appl. Nano Mater. 2021, 4, 10148–10154. [Google Scholar] [CrossRef]
- Luo, Y.-H.; Ma, S.-H.; Dong, H.; Zou, Y.-C.; Xu, K.-X.; Su, S.; Jin, X.-W.; Zhang, L.; Fang, W.-X. Two-dimensional nanosheets of metal-organic frameworks with tailorable morphologies. Mater. Today Chem. 2021, 22, 100517. [Google Scholar] [CrossRef]
- Luo, Y.-H.; Zhang, L.; Fang, W.-X.; Ma, S.-H.; Dong, H.; Su, S.; Zheng, Z.-Y.; Lia, D.-N.; Zhaib, L.-H. 2D hydrogen-bonded organic frameworks: In-site generation and subsequent exfoliation. Chem. Commun. 2021, 57, 5901–5904. [Google Scholar] [CrossRef]
- Luo, Y.-H.; Wang, C.; Ma, S.-H.; Jin, X.-W.; Zou, Y.-C.; Xu, K.-X.; Fang, W.-X.; Zhang, L.; Dong, H. Humidity reduction by using hetero-layered metal–organic framework nanosheet composites as hygroscopic materials. Environ. Sci. Nano 2021, 8, 3665–3672. [Google Scholar] [CrossRef]
- Krishnaraj, C.; Jena, H.S.; Leus, K.; Van Der Voort, P. Covalent triazine frameworks—A sustainable perspective. Green Chem. 2020, 22, 1038–1071. [Google Scholar] [CrossRef]
- Calik, M.; Sick, T.; Dogru, M.; Doblinger, M.; Datz, S.; Budde, H.; Hartschuh, A.; Auras, F.; Bein, T. From highly crystalline to outer surface-functionalized covalent organic frameworks—A modulation approach. J. Am. Chem. Soc. 2016, 138, 1234–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, D.; Alemany, L.B.; Guob, W.; Verduzco, R. Enhancement of crystallinity of imine-linked covalent organic frameworks via aldehyde modulators. Polym. Chem. 2020, 11, 4464–4468. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, K.; Ding, X.; Wang, S.; Zhang, C.; Liu, J.; Zhan, Z.; Cheng, G.; Li, B.; Chen, H.; et al. Controlling monomer feeding rate to achieve highly crystalline covalent triazine frameworks. Adv. Mater. 2019, 31, 1807865. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharov, V.N.; Kudryavtsev, I.K.; Dunaev, S.F.; Paseshnichenko, K.A.; Aslanov, L.A. Triazine 2D Nanosheets as a New Class of Nanomaterials: Crystallinity, Properties and Applications. Colloids Interfaces 2022, 6, 20. https://doi.org/10.3390/colloids6020020
Zakharov VN, Kudryavtsev IK, Dunaev SF, Paseshnichenko KA, Aslanov LA. Triazine 2D Nanosheets as a New Class of Nanomaterials: Crystallinity, Properties and Applications. Colloids and Interfaces. 2022; 6(2):20. https://doi.org/10.3390/colloids6020020
Chicago/Turabian StyleZakharov, Valery N., Igor K. Kudryavtsev, Sergey F. Dunaev, Kseniya A. Paseshnichenko, and Leonid A. Aslanov. 2022. "Triazine 2D Nanosheets as a New Class of Nanomaterials: Crystallinity, Properties and Applications" Colloids and Interfaces 6, no. 2: 20. https://doi.org/10.3390/colloids6020020
APA StyleZakharov, V. N., Kudryavtsev, I. K., Dunaev, S. F., Paseshnichenko, K. A., & Aslanov, L. A. (2022). Triazine 2D Nanosheets as a New Class of Nanomaterials: Crystallinity, Properties and Applications. Colloids and Interfaces, 6(2), 20. https://doi.org/10.3390/colloids6020020