Citric-Acid-Assisted Preparation of Biochar Loaded with Copper/Nickel Bimetallic Nanoparticles for Dye Degradation
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Preparation of Bare and Nanocatalyst-Modified Biochar Materials
2.3. Characterization
2.4. Catalytic Degradation of Methyl Orange
3. Results and Discussion
3.1. Physicochemical Properties of Biochar Nanocomposites
3.1.1. Structural Analysis Studies by XRD and Raman Spectroscopy
3.1.2. Surface Morphology and Elemental Composition (SEM/EDX)
3.1.3. Magnetic Properties of Biochar Materials
3.2. Potential Application: Degradation of Methyl Orange
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valorization 2016, 7, 201–235. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Harussani, M.; Sapuan, S. Development of Kenaf Biochar in Engineering and Agricultural Applications. Chem. Afr. 2021, 5, 1–17. [Google Scholar] [CrossRef]
- Atabani, A.; Ali, I.; Naqvi, S.R.; Badruddin, I.A.; Aslam, M.; Mahmoud, E.; Almomani, F.; Juchelková, D.; Atelge, M.; Khan, T.Y. A state-of-the-art review on spent coffee ground (SCG) pyrolysis for future biorefinery. Chemosphere 2022, 286, 131730. [Google Scholar] [CrossRef]
- Sutar, S.; Patil, P.; Jadhav, J. Recent advances in biochar technology for textile dyes wastewater remediation: A review. Environ. Res. 2022, 209, 112841. [Google Scholar] [CrossRef]
- Lu, Y.; Dai, T.; Fan, D.; Min, H.; Ding, S.; Yang, X. Turning Trash into Treasure: Pencil Waste–Derived Materials for Solar-Powered Water Evaporation. Energy Technol. 2020, 8, 2000567. [Google Scholar] [CrossRef]
- Kumar, A.; Bhattacharya, T. Biochar: A sustainable solution. Environ. Dev. Sustain. 2021, 23, 6642–6680. [Google Scholar] [CrossRef]
- Pan, X.; Gu, Z.; Chen, W.; Li, Q. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review. Sci. Total Environ. 2021, 754, 142104. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Eshun, J.; Wang, L.; Ansah, E.; Shahbazi, A.; Schimmel, K.; Kabadi, V.; Aravamudhan, S. Characterization of the physicochemical and structural evolution of biomass particles during combined pyrolysis and CO2 gasification. J. Energy Inst. 2 2019, 92, 82–93. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, S.; Verma, S.; Sar, T.; Sarsaiya, S.; Ravindran, B.; Liu, T.; Sindhu, R.; Patel, A.K.; Binod, P. Production and beneficial impact of biochar for environmental application: A comprehensive review. Bioresour. Technol. 2021, 337, 125451. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, L.; Li, H.; Westholm, L.J.; Carvalho, L.; Thorin, E.; Yu, Z.; Yu, X.; Skreiberg, Ø. A critical review on production, modification and utilization of biochar. J. Anal. Appl. Pyrolysis 2022, 161, 105405. [Google Scholar] [CrossRef]
- Plácido, J.; Bustamante-López, S.; Meissner, K.; Kelly, D.; Kelly, S. Microalgae biochar-derived carbon dots and their application in heavy metal sensing in aqueous systems. Sci. Total Environ. 2019, 656, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Barrientos, K.; Gaviria, M.I.; Arango, J.P.; Placido, J.; Bustamante, S.; Londoño, M.E.; Jaramillo, M. Synthesis, Characterization and Ecotoxicity Evaluation of Biochar-Derived Carbon Dots from Spruce Tree, Purple Moor-Grass and African Oil Palm. Processes 2021, 9, 1095. [Google Scholar] [CrossRef]
- Hidalgo, P.; Navia, R.; Hunter, R.; Coronado, G.; Gonzalez, M. Synthesis of carbon nanotubes using biochar as precursor material under microwave irradiation. J. Environ. Manag. 2019, 244, 83–91. [Google Scholar] [CrossRef]
- Khalil, A.; Msaadi, R.; Sassi, W.; Ghanmi, I.; Michely, L.; Snoussi, Y.; Chevillot, A.; Lau-Truong, S.; Chehimi, M. Facile diazonium modification of pomegranate peel biochar: A stupendous derived relationship between thermal and Raman analyses. ChemRxiv 2021. [Google Scholar] [CrossRef]
- Wang, J.; Chen, N.; Li, M.; Feng, C. Efficient removal of fluoride using polypyrrole-modified biochar derived from slow pyrolysis of pomelo peel: Sorption capacity and mechanism. J. Polym. Environ. 2018, 26, 1559–1572. [Google Scholar] [CrossRef]
- Endler, L.W.; Wolfart, F.; Mangrich, A.S.; Vidotti, M.; Marchesi, L.F. Facile method to prepare biochar–NiO nanocomposites as a promisor material for electrochemical energy storage devices. Chem. Pap. 2020, 74, 1471–1476. [Google Scholar] [CrossRef]
- Qhubu, M.C.; Methula, B.; Xaba, T.; Moyo, M.; Pakade, V.E. Iron-Zinc Impregnated Biochar Composite as a Promising Adsorbent for Toxic Hexavalent Chromium Remediation: Kinetics, Isotherms and Thermodynamics. Chem. Afr. 2021, 1–11. [Google Scholar] [CrossRef]
- Khalil, A.M.; Michely, L.; Pires, R.; Bastide, S.; Jlassi, K.; Ammar, S.; Jaziri, M.; Chehimi, M. Copper/nickel-decorated olive pit biochar: One pot solid state synthesis for environmental remediation. Appl. Sci. 2021, 11, 8513. [Google Scholar] [CrossRef]
- Lopes, R.P.; Astruc, D. Biochar as a support for nanocatalysts and other reagents: Recent advances and applications. Coord. Chem. Rev. 2021, 426, 213585. [Google Scholar] [CrossRef]
- Tu, C.; Wei, J.; Guan, F.; Liu, Y.; Sun, Y.; Luo, Y. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environ. Int. 2020, 137, 105576. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-H.; Lee, D.-J.; Huang, C. Modification on biochars for applications: A research update. Bioresour. Technol. 2021, 319, 124100. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, R.; Dong, G.; Xiang, M.; Hui, J.; Ou, J.; Qin, H. Biochar nanocomposite derived from watermelon peels for electrocatalytic hydrogen production. ACS Omega 2021, 6, 2066–2073. [Google Scholar] [CrossRef]
- Jing, H.; Ji, L.; Wang, Z.; Guo, J.; Lu, S.; Sun, J.; Cai, L.; Wang, Y. Synthesis of ZnO nanoparticles loaded on biochar derived from spartina alterniflora with superior photocatalytic degradation performance. Nanomaterials 2021, 11, 2479. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Ju, M.; Liu, L. Preparation and modification of biochar materials and their application in soil remediation. Appl. Sci. 2019, 9, 1365. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.-H.; Zeng, R.J.; Jiang, H. Recent developments of post-modification of biochar for electrochemical energy storage. Bioresour. Technol. 2017, 246, 224–233. [Google Scholar] [CrossRef]
- Shang, L.; Xu, H.; Huang, S.; Zhang, Y. Adsorption of ammonium in aqueous solutions by the modified biochar and its application as an effective N-fertilizer. Water Air Soil Pollut. 2018, 229, 320. [Google Scholar] [CrossRef]
- Li, F.; Jin, Y.; He, S.; Jin, J.; Wang, Z.; Khan, S.; Tian, G.; Liang, X. Use of polyacrylamide modified biochar coupled with organic and chemical fertilizers for reducing phosphorus loss under different cropping systems. Agric. Ecosyst. Environ. 2021, 310, 107306. [Google Scholar] [CrossRef]
- Mirzaei, P. Préparation de matériaux d’électrode pour l’élimination et la valorisation de polluants azotés. Ph.D. Thesis, Paris Est, Paris, France, 2018. [Google Scholar]
- Liu, Y.; Deng, B.; Li, K.; Wang, H.; Sun, Y.; Dong, F. Metal-organic framework derived carbon-supported bimetallic copper-nickel alloy electrocatalysts for highly selective nitrate reduction to ammonia. J. Colloid Interface Sci. 2022, 614, 405–414. [Google Scholar] [CrossRef]
- Yao, D.; Xu, T.; Yuan, J.; Tao, Y.; He, G.; Chen, H. Graphene based copper-nickel bimetal nanocomposite: Magnetically separable catalyst for reducing hexavalent chromium. ChemistrySelect 2020, 5, 3243–3247. [Google Scholar] [CrossRef]
- Al-Enizi, A.M.; Ubaidullah, M.; Ahmed, J.; Alrobei, H.; Alshehri, S.M. Copper nickel@ reduced graphene oxide nanocomposite as bifunctional electro-catalyst for excellent oxygen evolution and oxygen reduction reactions. Mater. Lett. 2020, 260, 126969. [Google Scholar] [CrossRef]
- Ismail, M.; Khan, M.; Khan, S.B.; Khan, M.A.; Akhtar, K.; Asiri, A.M. Green synthesis of plant supported CuAg and CuNi bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. J. Mol. Liq. 2018, 260, 78–91. [Google Scholar] [CrossRef]
- Yuan, D.; Zhang, L.; Wan, S.; Sun, L. Rational design of microporous biochar based on ion exchange using carboxyl as an anchor for high-efficiency capture of gaseous p-xylene. Sep. Purif. Technol. 2021, 286, 120402. [Google Scholar] [CrossRef]
- Sun, L.; Chen, D.; Wan, S.; Yu, Z. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids. Bioresour. Technol. 2015, 198, 300–308. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, N.; Zhang, S. Catalytic pyrolysis of biomass with potassium compounds for Co-production of high-quality biofuels and porous carbons. Energy 2020, 190, 116431. [Google Scholar] [CrossRef]
- Zabiszak, M.; Nowak, M.; Taras-Goslinska, K.; Kaczmarek, M.T.; Hnatejko, Z.; Jastrzab, R. Carboxyl groups of citric acid in the process of complex formation with bivalent and trivalent metal ions in biological systems. J. Inorg. Biochem. 2018, 182, 37–47. [Google Scholar] [CrossRef]
- Khemakhem, M.; Jaziri, M. Composites based on (ethylene–propylene) copolymer and olive solid waste: Rheological, thermal, mechanical, and morphological behaviors. Polym. Eng. Sci. 2016, 56, 27–35. [Google Scholar] [CrossRef]
- Puig-Gamero, M.; Esteban-Arranz, A.; Sanchez-Silva, L.; Sánchez, P. Obtaining activated biochar from olive stone using a bench scale high-pressure thermobalance. J. Environ. Chem. Eng. 2021, 9, 105374. [Google Scholar] [CrossRef]
- Li, X.; Hayashi, J.-I.; Li, C.-Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air. Fuel 2006, 85, 1509–1517. [Google Scholar] [CrossRef]
- Pusceddu, E.; Montanaro, A.; Fioravanti, G.; Santilli, S.; Foscolo, P.; Criscuoli, I.; Raschi, A.; Miglietta, F. Comparison between ancient and fresh biochar samples, a study on the recalcitrance of carbonaceous structures during soil incubation. Int. J. New Technol. Res. 2017, 3, 39–46. [Google Scholar]
- Chen, Z.-X.; Jin, X.-Y.; Chen, Z.; Megharaj, M.; Naidu, R. Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J. Colloid Interface Sci. 2011, 363, 601–607. [Google Scholar] [CrossRef] [PubMed]
Materials | OP Mass ± 0.0001 (g) | OP MassAfter Impregnation ± 0.0001 (g) | CA Mass ± 0.0001 (g) | Cu(NO₃)₂.3H₂O Mass (g)/mmol | Ni(NO₃)₂.6H₂O Mass (g)/mmol | Pyrolyzed OP Impregnated with Metal Ions (g) | Biochar Mass (g) and Yield (%) | Final Metal/ Biochar Ratio (mmol/g) |
---|---|---|---|---|---|---|---|---|
OP + CA | 3.0000 | 3.5762 | 0.5762 | - | - | 0.7750 | 0.220 (28.4%) | - |
OP + CA + CuNi | 3.0010 | 5.1750 | 0.5760 | 0.7250/3.000 | 0.8730/3.002 | 0.8010 | 0.246 (30.7%) | 3.776 mmol/g |
OP + CA + CuNi (10/1) | 3.0060 | 4.4045 | 0.5775 | 0.7245/2.999 | 0.0965/0.332 | 0.7960 | 0.254 (31.9%) | 2.37 mmol/g |
OP + CA + Ni + | 3.0093 | 4.4586 | 0.5760 | - | 0.8733/3.003 | 0.8010 | 0.269 (33.6%) | 2.30 mmol/g |
Catalyst | Crystal Phase | Phase Content (wt.%) | Crystal Size (Å) | Ref. |
---|---|---|---|---|
B-CA@Ni | Ni | 30 | 30 | This work |
NiO | 70 | 60 | ||
B-CA@CuNi | Cu | 48 | 130 | |
Cu2O | 12 | 125 | ||
Ni | 10 | 40 | ||
NiO | 30 | 75 | ||
B-CA@CuNi10/1 | Cu | 67 | 120 | |
Cu2O | 21 | 110 | ||
Ni | 10 | 40 | ||
NiO | 2 | 60 | ||
B@CuNi | Cu | 70 | 190 | [21] |
Ni | 30 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omiri, J.; Snoussi, Y.; Bhakta, A.K.; Truong, S.; Ammar, S.; Khalil, A.M.; Jouini, M.; Chehimi, M.M. Citric-Acid-Assisted Preparation of Biochar Loaded with Copper/Nickel Bimetallic Nanoparticles for Dye Degradation. Colloids Interfaces 2022, 6, 18. https://doi.org/10.3390/colloids6020018
Omiri J, Snoussi Y, Bhakta AK, Truong S, Ammar S, Khalil AM, Jouini M, Chehimi MM. Citric-Acid-Assisted Preparation of Biochar Loaded with Copper/Nickel Bimetallic Nanoparticles for Dye Degradation. Colloids and Interfaces. 2022; 6(2):18. https://doi.org/10.3390/colloids6020018
Chicago/Turabian StyleOmiri, Jessim, Youssef Snoussi, Arvind K. Bhakta, Stéphanie Truong, Souad Ammar, Ahmed M. Khalil, Mohamed Jouini, and Mohamed M. Chehimi. 2022. "Citric-Acid-Assisted Preparation of Biochar Loaded with Copper/Nickel Bimetallic Nanoparticles for Dye Degradation" Colloids and Interfaces 6, no. 2: 18. https://doi.org/10.3390/colloids6020018
APA StyleOmiri, J., Snoussi, Y., Bhakta, A. K., Truong, S., Ammar, S., Khalil, A. M., Jouini, M., & Chehimi, M. M. (2022). Citric-Acid-Assisted Preparation of Biochar Loaded with Copper/Nickel Bimetallic Nanoparticles for Dye Degradation. Colloids and Interfaces, 6(2), 18. https://doi.org/10.3390/colloids6020018