Reducing the Bitter Taste of Virgin Olive Oil Don Carlo by Microbial and Vegetable Enzymes Linked to the Colloidal Fraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Phenol Rich Monocultivar EVOO for Debittering Assays
2.2. Production of Settled and Decanter Leccino EVOO for Blending
2.3. Blending of Phenol-Rich EVOO with Settled or Decanter Leccino EVOO
2.4. Enzymatic Analysis of the EVOO
2.5. β-Glucosidase Activity
2.6. Phenol Oxidase Assay
2.7. Microbiological Analysis
2.8. β-Glucosidase and Phenoloxidase Producing Yeasts
2.9. Yeast Biodiversity Assessment
2.10. Suspended Materials
2.11. Total Phenols
2.12. Bitterness Index (K225)
2.13. Analytical Indices and Sensory Analyses
2.14. Statistical Analysis
3. Results and Discussion
3.1. Laboratory Debittering Tests
3.2. Microbiological Analysis and Yeast Biodiversity
3.3. Physicochemical Analysis
3.4. Qualitative Indices
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cicerale, S.; Lucas, L.J.; Keast, R.S. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol. 2012, 23, 129–135. [Google Scholar] [CrossRef] [PubMed]
- European Food safety Authority (EFSA). Polyphenols in olive oil related health claims. Regulation (EC) N. 1924/2006. EFSA J. 2011, 9, 2044. [Google Scholar]
- Koidis, A.; Triantafillou, E.; Boskou, D. Endogenous microflora in turbid virgin olive oils and the physicochemical characteristics of these oils. Eur. J. Lipid Sci. Technol. 2008, 110, 164–171. [Google Scholar] [CrossRef]
- Papadimitriou, V.; Dulle, M.; Wachter, W.; Sotiroudis, T.G.; Glatter, O.; Xenakis, A. Structure and dynamics of veiled virgin olive oil: Influence of production conditions and relation to its antioxidant capacity. Food Biophys. 2013, 8, 112–121. [Google Scholar] [CrossRef]
- Veneziani, G.; Esposto, S.; Minnocci, A.; Taticchi, A.; Urbani, S.; Selvaggini, R.; Sordini, B.; Servili, M. Compositional differences between veiled and filtered virgin olive oils during a simulated shelf life. LWT Food Sci. Tech. 2018, 94, 87–95. [Google Scholar] [CrossRef]
- Ciafardini, G.; Zullo, B.A. Microbiological activity in stored olive oil. Int. J. Food Microbiol. 2002, 75, 111–118. [Google Scholar] [CrossRef]
- Lercker, G.; Frega, N.; Bocci, F.; Servidio, G. “Veiled” extra-virgin olive oils: Dispersion response related to oil quality. J. Am. Oil Chem. Soc. 1994, 71, 657–658. [Google Scholar] [CrossRef]
- Koidis, A.; Boskou, D. The contents of proteins and phospholipids in veiled (cloudy) olive oils. Eur. J. Lipid Sci. Technol. 2006, 108, 323–328. [Google Scholar] [CrossRef]
- Georgalaki, M.D.; Sotiroudis, T.G.; Xenakis, A. The presence of oxidizing enzyme activities in virgin olive oil. J. Am. Oil Chem. Soc. 1998, 75, 155–159. [Google Scholar] [CrossRef]
- Soler-Rivas, J.C.; Espín, C.; Wichers, H.J. Review oleuropein and related compounds. J. Sci. Food Agric. 2000, 80, 1013–1023. [Google Scholar] [CrossRef]
- Dierkes, G.; Krieger, S.; Dück, R.; Bongartz, A.; Schmitz, O.J.; Hayen, H. “High-performance liquid chromatography-mass spectrometry profiling of phenolic compounds for evaluation of olive oil bitterness and pungency”. J. Agric. Food. Chem. 2012, 60, 7597–7606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, M.N.; Galeano-Díaz, T.; López, O.; Fernández-Bolaños, J.G.; Sánchez, J.; De Miguel, C.; Gil, M.V.; Martín-Vertedor, D. Phenolic compounds and antioxidant capacity of virgin olive oil. Food Chem. 2014, 163, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Mateos, R.; Cert, A.; Pérez-Camino, M.C.; García, J.M. Evaluation of virgin olive oil bitterness by quantification of secoiridoid derivatives. J. Am. Oil Chem. Soc. 2004, 81, 71–75. [Google Scholar] [CrossRef]
- Peres, F.; Martins, L.L.; Ferreira-Dias, S. Influence of enzymes and technology on virgin olive oil composition. Crit. Rev. Food Sci. Nutr. 2017, 57, 3104–3126. [Google Scholar] [CrossRef] [PubMed]
- Montedoro, G.F.; Servili, M.; Baldioli, M.; Selvaggini, R.; Miniati, E.; Macchioni, A. Simple and hydrolyzable compounds in virgin olive oil: Spectroscopic characterization of the secoiridoid derivatives. J. Agric. Food Chem. 1993, 41, 2228–2234. [Google Scholar] [CrossRef]
- Botìa, J.; Ortuno, M.A.; Benavente-Garcìa, O.; Bàidez, A.G.; Frìas, J.; Marcos, D.; Del Rio, J.A. Modulation of the biosynthesis of some phenolic compounds in Olea europea L. fruits: Their influence on olive oil quality. J. Agric. Food Chem. 2001, 49, 355–358. [Google Scholar] [CrossRef]
- Ciafardini, G.; Zullo, B.A.; Cioccia, G.; Iride, A. Lipolytic activity of Williopsis californica and Saccharomyces cerevisiae in extra virgin olive oil. Int. J. Food Microbiol. 2006, 107, 27–32. [Google Scholar] [CrossRef]
- Zullo, B.A.; Cioccia, G.; Ciafardini, G. Effects of some oil-born yeasts on the sensory characteristics of Italian virgin olive oil during its storage. Food Microbiol. 2013, 36, 70–78. [Google Scholar] [CrossRef]
- Ciafardini, G.; Zullo, B.A. Virgin olive oil yeasts: A review. Food Microbiol. 2018, 70, 245–253. [Google Scholar] [CrossRef]
- Gutiérrez Rosales, F.; Perdiguero, S.; Olias, J.M. Evaluation of the bitter taste in virgin olive oil. J. Am. Oil Chem. Soc. 1992, 64, 394–395. [Google Scholar] [CrossRef]
- Garcia, J.M.; Yousti, K.; Oliva, J.; García-Diaz, M.T.; Pérez-Camino, M.C. Hot water dipping of olives (Olea europaea) for virgin oil debittering. J. Agric. Food Chem. 2005, 53, 8248–8252. [Google Scholar] [CrossRef] [PubMed]
- Yousfi, K.; Moyano, M.J.; Martinez, F.; Cayuela, J.A. Postharvest heat treatment for olive oil debittering at the industrial scale. J. Am. Oil Chem. Soc. 2010, 87, 1053–1061. [Google Scholar] [CrossRef]
- Abenoza, M.; Raso, J.; Oria, R.; Sánchez-Gimeno, A.C. Debittering olive oil by liquid-liquid extraction: Kinetics and the effect on the quality of Arbequina olive oil. Eur. J. Lipid Sci. Technol. 2015, 118, 1243–1249. [Google Scholar] [CrossRef]
- Abenoza, M.; Raso, J.; Oria, R.; Sánchez-Gimeno, A.C. Modulating the bitterness of Empeltre olive oil by partitioning polyphenols between oil and water phases: Effect on quality and shelf life. Food Sci. Technol. Int. 2018, 25, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Uceda, M.; Hermoso, M. La calidad del aceite de oliva. In El Cultivo del Olivo; Barranco, D., Fernandez-Escobar, R., Rallo, L., Eds.; Mundi-Prensa: Madrid, Spain, 2001; pp. 589–614. [Google Scholar]
- Zullo, B.A.; Ciafardini, G. Distribution of dimorphic yeast species in commercial extra virgin olive oil. Food Microbiol. 2010, 27, 1035–1042. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Fell, J.W. The Yeasts, a Taxonomic Study; Elsevier: Amsterdam, The Netherlands, 1998; pp. 320–351. [Google Scholar]
- Sambrock, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning, a Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989; pp. 1814–1875. [Google Scholar]
- Tornai-Lehoczki, J.; Peter, G.; Dlauchy, D. CHROMagar Candida medium as 468 a practical tool for the differentiation and presumptive identification of yeast species isolated from salad. Int. J. Food Microbiol. 2003, 86, 180–200. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Robnett, C.J. Identification of clinical important ascomycetous yeast based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J. Clin. Microbiol. 1997, 5, 1216–1223. [Google Scholar] [CrossRef] [Green Version]
- European Commission Regulation No. 1348/2013 of 16 December Amending 2013 Regulation (EEC) No. 2568/91 on the Characteristics of Olive Oil and Olive Residue Oil and on the Relevant Methods of Analysis.
- EN ISO/IEC 17025/2005.; General Requirement for the Competence of Testing and Calibration Laboratories International Olive Council (2007) Sensory Analysis of Olive Oil-method for the Organoleptic Assessment of Virgin Olive Oil. 2005, IOC/T.20/Doc. No.15/Rev.2.
- Gutiérrez-Rosales, F.; Ríos, J.J.; Gómez-Rey, M.L. Main polyphenols in the bitter taste of virgin olive oil. Structural confirmation by on-line high-performance liquid chromatography electrospray ionization mass spectrometry. J. Agric. Food Chem. 2003, 51, 6021–6025. [Google Scholar] [CrossRef]
- Beltrán, G.; Ruano, M.T.; Jiménez, A.; Uceda, M.; Aguilera, M.P. Evaluation of virgin olive oil bitterness by total phenol content analysis. Eur. J. Lipid Sci. Technol. 2007, 109, 193–197. [Google Scholar] [CrossRef]
- Ciafardini, G.; Cioccia, G.; Zullo, B.A. Survival of Candida parapsilosis yeast in olive oil. Ann. Microbiol. 2013, 63, 1645–1648. [Google Scholar] [CrossRef]
- Zullo, B.A.; Ciafardini, G. Changes in physicochemical and microbiological parameters of short and long-lived veiled (cloudy) virgin olive oil upon storage in the dark. Eur. J. Lipid Sci. Tech. 2018, 120, 1700309. [Google Scholar] [CrossRef]
Cultivar | Suspended Material (%) | Phenolic Characteristics | Sensory Profile | Merceological Class ** | ||||
---|---|---|---|---|---|---|---|---|
Total Polar Phenols (mg CAE per kg) | B.I. (ABS225) | Fruitiness * | Bitterness | Pungency | Defects | |||
Coratina | 0.033 ± 0.008 ns | 478 ± 20.17c | 2.402 ± 0.00 6 b | 2.70 ± 0.19 a | 2.70 ± 0.17 b | 2.36 ± 0.19 b | 0 | EVOO |
Don Carlo | 0.040 ± 0.001 ns | 708 ± 10.01a | 2.771 ± 0.001 a | 4.70 ± 0.13 a | 4.80 ± 0.31 a | 3.70 ± 0.24 a | 0 | EVOO |
Giulia | 0.033 ± 0.003 ns | 492 ± 22.01b | 2.445 ± 0.022 b | 2.78 ± 0.10 b | 2.78 ± 0.11 b | 2.43 ± 0.21 b | 0 | EVOO |
FS-17 | 0.043 ± 0.005 ns | 562 ± 7.81b | 2.552 ± 0.011 ab | 3.18 ± 0.15 a | 3.18 ± 0.12 ab | 2.78 ± 0.20 ab | 0 | EVOO |
Leccino EVOO mixer | Suspend Material (%) | Total Polar Phenols (mg CAE per Kg) | Yeasts | Enzymatic Activity of the EVOO Suspended Materials | |||
---|---|---|---|---|---|---|---|
Total Yeasts (Log CFU/mL oil) | β-Glucosidase-Producing Yeasts (%) | Phenoloxidase-Producing Yeasts (%) | β-Glucosidase (µg p-Nitrophenol/g Solids) | Phenoloxidase (U/g Solids)* | |||
Decanter EVOO | 0.053 ± 0.01b | 158 ± 0.40 | 3.15 ± 0.09ns | 96 ± 4ns | 3± 1ns | 320.70 ± 3.5b | 150.20 ± 5.4b** |
Settled EVOO | 0.083 ± 0.01a | 185 ± 0.70 | 3.80 ± 0.05ns | 98 ± 9ns | 11± 2ns | 422.62 ± 4.05a | 235.71 ± 1.9a |
Blended Don Carlo EVOO | Total Yeasts (Log CFU/mL Oil) | β-Glucosidase-Producing Yeasts (%) | Phenoloxidase-Producing Yeasts (% of Total Number) | Representative Species at 3 Months of Storage | |||
---|---|---|---|---|---|---|---|
Time Zero | 3 Months | Time Zero | 3 Months | Time Zero | 3 Months | ||
Unmixed Don Carlo EVOO in vertically fixed canister | 1.80 ± 0.07b* | 1.30 ± 0.25b | 92 ± 4 ns | 90 ± 9 ns | 11 ± 0.8 ns | 7 ± 0.3 ns | Candida adriatica |
Unmixed Don Carlo EVOO in periodically inverted canister | 1.80 ± 0.07b | 1.88 ± 0.13b | 92 ± 10 ns | 95 ± 6 ns | 11 ± 0.8 ns | 15 ± 0.2 ns | Candida adriatica |
Blend Don Carlo+ Decanter | 2.60 ± 0.15a | 1.80 ± 0.19ab | 95 ± 5 ns | 97 ± 8 ns | 12 ± 0.5 ns | 13 ± 0.7 ns | Candida adriatica |
EVOO in vertically fixed canister | Candida diddensiae | ||||||
Blend Don Carlo+ Decanter | 2.60 ± 0.15a | 2.44 ± 0.26 a | 95 ± 13 ns | 98 ± 5 ns | 12 ± 0.5 ns | 18 ± 0.9 ns | Candida adriatica |
EVOO in periodically inverted canister | Candida diddensiae | ||||||
Blend Don Carlo+ Settled | 2.87 ± 0.18a | 1.98 ± 0.13ab | 96 ± 11 ns | 98 ± 7 ns | 14 ± 0.9 ns | 10 ± 0.4 ns | Candida adriatica |
EVOO in vertically fixed canister | Candida diddensiae | ||||||
Blend Don Carlo+ Settled | 2.87 ± 0.18a | 2.50 ± 0.18a | 96 ± 12 ns | 100 ± 9 ns | 14 ± 0.9 ns | 19 ± 0.5 ns | Candida adriatica |
EVOO in periodically inverted canister | Candida diddensiae |
Time Zero | Three Months Storage | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Blend Don Carlo EVOO | Total Polar Phenols (mg CAE per kg) | △* (%) | B.I. (ABS225) | △ (%) | Total Polar Phenols (mg CAE per kg) | △ | △** | B.I. (ABS225) | △ | △ |
Unmixed Don Carlo oil in vertically fixed canister | 708 ± 10.01a | 0 | 2.771 ± 0.0001a | 0 | 617.38 ± 12.28 a | 0 | 13 | 2.468 ± 0.007 a | 0 | 11 |
Unmixed Don Carlo oil in periodically inverted canister | 708 ± 10.01 a | 0 | 2.771 ± 0.001 a | 0 | 610.07 ± 4.21 a | 0 | 14 | 2.453 ± 0.036 a | 0 | 12 |
Blend Don Carlo+ Decanter oil in vertically fixed canister | 600 ± 7.32 b | 15 | 2.309 ± 0.030 b | 17 | 527.05 ± 7.32 a | 15 | 12 | 2.247 ± 0.03ab | 9 | 3 |
Blend Don Carlo+ Decanter oil in periodically inverted canister | 600 ± 7.32 b | 15 | 2.309 ± 0.030 b | 17 | 450.91 ± 5.11 b | 26 | 25 | 2.119 ± 0.033ab | 14 | 8 |
Blend Don Carlo+ Settled oil in vertically fixed canister | 588 ± 10.20 b | 17 | 2.301 ± 0.020 b | 17 | 411.48 ± 5.26 b | 33 | 30 | 1.784 ± 0.021b | 28 | 22 |
Blend Don Carlo+ Settled oil in periodically inverted canister | 588 ± 10.20 b | 17 | 2.301 ± 0.020 b | 17 | 285.74 ± 6.41 c | 53 | 51 | 1.339 ± 0.027c | 45 | 42 |
Blended Don Carlo EVOO | Fruitiness | △* (%) | Bitterness | △ (%) | Pungency | △ | Defects | Merceological Class |
---|---|---|---|---|---|---|---|---|
Unmixed Don Carlo oil in vertically fixed canister | 4.0 ± 0.1** | 0 | 4.8 ± 0.2a | 0 | 3.5 ± 0.3 a | 0 | 0 | EVOO |
Unmixed Don Carlo oil in periodically inverted canister | 3.5 ± 0.2 | 0 | 4.5 ± 0.4 a | 0 | 3.5 ± 0.2 a | 0 | 14 | EVOO |
Blend Don Carlo+ Decanter oil in vertically fixed canister | 3.5 ± 0.4 | 13 | 3.5 ± 0.1 ab | 27 | 3.3 ± 0.2 a | 6 | 0 | EVOO |
Blend Don Carlo+ Decanter oil in periodically inverted canister | 3.0 ± 0.2 | 14 | 2.0 ± 0.2 b | 55 | 2.8 ± 0.3ab | 20 | 0 | EVOO |
Blend Don Carlo+ Settled oil in vertically fixed canister | 3.8 ± 0.1 | 5 | 2.5 ± 0.2 b | 48 | 2.5 ± 0.1b | 29 | 0 | EVOO |
Blend Don Carlo+ Settled oil in periodically inverted canister | 3.2 ± 0.2 | 9 | 1.0 ± 0.1 c | 80 | 2.6 ± 0.2 b | 26 | 0 | EVOO |
Blended Don Carlo EVOO | Acidity (% oleic acid) | N. of Peroxides (mg O2/kg oil) | K232 | K270 | ∆K | Merceological Class |
---|---|---|---|---|---|---|
Unmixed Don Carlo oil in canister vertical fixed | 0.23 ± 0.03b | 5.30 ± 0.42b | 2.177 ± 0.00ns | 0.196 ± 0.001ns | −0.004ns | EVOO |
Unmixed Don Carlo oil in canister periodically inverted | 0.27 ± 0.06b | 5.90 ± 0.60b | 2.407 ± 0.007 ns | 0.198 ± 0.001ns | −0.004ns | EVOO |
Blend Don Carlo+ Decanter oil in canister vertical fixed | 0.30 ± 0.01ab | 7.70 ± 0.32 ab | 2.100 ± 0.007 ns | 0.164 ± 0.003ns | −0.003ns | EVOO |
Blend Don Carlo+ Decanter oil in canister periodically inverted | 0.45 ± 0.03a | 8.70 ± 0.28a | 2.170 ± 0.00 ns | 0.184 ± 0.004ns | −0.003ns | EVOO |
Blend Don Carlo+ Settled oil in canister vertical fixed | 0.28 ± 0.01b | 5.60 ± 0.30b | 2.151 ± 0.003 ns | 0.182 ± 0.002ns | −0.004ns | EVOO |
Blend Don Carlo+ Settled oil in canister periodically inverted | 0.48 ± 0.01a | 9.60 ± 0.28a | 2.181 ± 0.002 ns | 0.188 ± 0.003ns | −0.004ns | EVOO |
Limit values allowed for the EVOO by the EC Regulation | 0.80 | 20 | 2.50 | 0.22 | 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zullo, B.A.; Pachioli, S.; Ciafardini, G. Reducing the Bitter Taste of Virgin Olive Oil Don Carlo by Microbial and Vegetable Enzymes Linked to the Colloidal Fraction. Colloids Interfaces 2020, 4, 11. https://doi.org/10.3390/colloids4010011
Zullo BA, Pachioli S, Ciafardini G. Reducing the Bitter Taste of Virgin Olive Oil Don Carlo by Microbial and Vegetable Enzymes Linked to the Colloidal Fraction. Colloids and Interfaces. 2020; 4(1):11. https://doi.org/10.3390/colloids4010011
Chicago/Turabian StyleZullo, Biagi Angelo, Silverio Pachioli, and Gino Ciafardini. 2020. "Reducing the Bitter Taste of Virgin Olive Oil Don Carlo by Microbial and Vegetable Enzymes Linked to the Colloidal Fraction" Colloids and Interfaces 4, no. 1: 11. https://doi.org/10.3390/colloids4010011
APA StyleZullo, B. A., Pachioli, S., & Ciafardini, G. (2020). Reducing the Bitter Taste of Virgin Olive Oil Don Carlo by Microbial and Vegetable Enzymes Linked to the Colloidal Fraction. Colloids and Interfaces, 4(1), 11. https://doi.org/10.3390/colloids4010011