# Anomalously Slow Dewetting of Colloidal Particles at a Liquid/Gas Interface

## Abstract

**:**

## 1. Introduction

## 2. Formulation of the Problem

## 3. Averaged Particle Dynamics

## 4. Discussion

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- de Gennes, P.G. Wetting: Statics and dynamics. Rev. Mod. Phys.
**1985**, 57, 827–863. [Google Scholar] [CrossRef] - Abraham, D.; Collet, P.; De Coninck, J.; Dunlop, F. Langevin dynamics of spreading and wetting. Phys. Rev. Lett.
**1990**, 65, 195–198. [Google Scholar] [CrossRef] [PubMed] - Voué, M.; De Coninck, J. Spreading and wetting at the microscopic scale: Recent developments and perspectives. Acta Mater.
**2000**, 48, 4405–4417. [Google Scholar] [CrossRef] - Blake, T.D.; De Coninck, J. Dynamics of wetting and Kramers’ theory. Eur. Phys. J. Special Topics
**2011**, 197, 249–264. [Google Scholar] [CrossRef] - Smith, E.R.; Müller, E.A.; Craster, R.V.; Matar, O.K. A Langevin model for fluctuating contact angle behavior parametrized using molecular dynamics. Soft Matter
**2016**, 12, 9604–9615. [Google Scholar] [CrossRef] [PubMed] - Perrin, H.; Lhermeraout, R.; Davitt, K.; Rolly, E.; Andreotti, B. Thermally activated motion of a contact line over defects. Soft Matter
**2018**, 14, 1581–1595. [Google Scholar] [CrossRef] [PubMed] - Starov, V.M.; Velarde, M.G.; Radke, C.J. Wetting and Spreading Dynamics; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Dagastine, R.R.; White, L.R. Forces between a rigid probe particle and a liquid interface II. The general case. J. Colloid Interface Sci.
**2002**, 247, 310–320. [Google Scholar] [CrossRef] [PubMed] - Ally, J.; Kappl, M.; Butt, H.; Amirfazli, A. Detachment force of particles from air-liquid interfaces of films and bubbles. Langmuir
**2010**, 26, 18135–18143. [Google Scholar] [CrossRef] [PubMed] - Kaz, D.M.; McGorty, R.; Mani, M.; Brenner, M.P.; Manoharan, V.N. Physical ageing of the contact line on colloidal particles at liquid interfaces. Nature Mat.
**2012**, 11, 138–142. [Google Scholar] [CrossRef] [PubMed] - Rahmani, A.M.; Wang, A.; Manoharan, V.N.; Colosqui, C.E. Colloidal particle adsorption at liquid interfaces: capillary driven dynamics and thermally activated kinetics. Soft Matter
**2016**, 12, 6365–6372. [Google Scholar] [CrossRef] [PubMed] - Keal, L.; Colosqui, C.E.; Tromp, R.H.; Monteux, C. Colloidal particle adsorption at water-water interfaces with ultralow interfacial tension. Phys. Rev. Lett.
**2018**, 120, 208003. [Google Scholar] [CrossRef] [PubMed] - Blake, T.D.; Haynes, J.M. Kinetics of liquid/liquid displacement. J. Coll. Interface Sci.
**1969**, 30, 421–423. [Google Scholar] [CrossRef] - Bouchard, J.-P.; Georges, A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep.
**1990**, 195, 127–293. [Google Scholar] [CrossRef] - Sinai, Ya.G. The limiting behavior of a one-dimensional random walk in a random medium. Theor. Probab. Appl.
**1982**, 27, 256–268. [Google Scholar] [CrossRef] - Golosov, A. Localization of random walks in one-dimensional random environments. Commun. Math. Phys.
**1984**, 92, 491–506. [Google Scholar] [CrossRef] - Zwanzig, R. Diffusion in a rough potential. Proc. Natl. Acad. Sci. USA
**1988**, 85, 2029–2030. [Google Scholar] [CrossRef] [PubMed] - Goychuk, I.; Kharchenko, V.O. Anomalous features of diffusion in corrugated potentials with spatial correlations: faster than normal, and other surprises. Phys. Rev. Lett.
**2014**, 113, 100601. [Google Scholar] [CrossRef] [PubMed] - Goychuk, I.; Kharchenko, V.O.; Metzler, R. Persistent Sinai-type diffusion in Gaussian random potentials with decaying spatial correlations. Phys. Rev. E
**2017**, 96, 052134. [Google Scholar] [CrossRef] [PubMed] - Hanes, R.D.L.; Dalle-Ferrier, C.; Schmiedeberg, M.; Jenkins, M.C.; Egelhaaf, S.U. Colloids in one dimensional random energy landscapes. Soft Matter
**2012**, 8, 2714–2723. [Google Scholar] [CrossRef] - Hanes, R.D.L.; Schmiedeberg, M.; Egelhaaf, S.U. Brownian particles on rough substrates: Relation between intermediate subdiffusion and asymptotic long-time diffusion. Phys. Rev. E
**2013**, 88, 0162133. [Google Scholar] [CrossRef] [PubMed] - Colosqui, C.E.; Morris, J.F.; Koplik, J. Colloidal adsorption at fluid interfaces: Regime crossover from fast relaxation to physical aging. Phys. Rev. Lett.
**2013**, 111, 028302. [Google Scholar] [CrossRef] [PubMed] - Pieranski, P. Two-dimensional interfacial colloidal crystals. Phys. Rev. Lett.
**1980**, 45, 569–572. [Google Scholar] [CrossRef] - Kramers, H.A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica
**1940**, 7, 284–304. [Google Scholar] [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Nepomnyashchy, A. Anomalously Slow Dewetting of Colloidal Particles at a Liquid/Gas Interface. *Colloids Interfaces* **2019**, *3*, 26.
https://doi.org/10.3390/colloids3010026

**AMA Style**

Nepomnyashchy A. Anomalously Slow Dewetting of Colloidal Particles at a Liquid/Gas Interface. *Colloids and Interfaces*. 2019; 3(1):26.
https://doi.org/10.3390/colloids3010026

**Chicago/Turabian Style**

Nepomnyashchy, Alexander. 2019. "Anomalously Slow Dewetting of Colloidal Particles at a Liquid/Gas Interface" *Colloids and Interfaces* 3, no. 1: 26.
https://doi.org/10.3390/colloids3010026