SkinVisualNet: A Hybrid Deep Learning Approach Leveraging Explainable Models for Identifying Lyme Disease from Skin Rash Images
Abstract
Share and Cite
Sohel, A.; Turjy, R.C.D.; Bappy, S.P.; Assaduzzaman, M.; Marouf, A.A.; Rokne, J.G.; Alhajj, R. SkinVisualNet: A Hybrid Deep Learning Approach Leveraging Explainable Models for Identifying Lyme Disease from Skin Rash Images. Mach. Learn. Knowl. Extr. 2025, 7, 157. https://doi.org/10.3390/make7040157
Sohel A, Turjy RCD, Bappy SP, Assaduzzaman M, Marouf AA, Rokne JG, Alhajj R. SkinVisualNet: A Hybrid Deep Learning Approach Leveraging Explainable Models for Identifying Lyme Disease from Skin Rash Images. Machine Learning and Knowledge Extraction. 2025; 7(4):157. https://doi.org/10.3390/make7040157
Chicago/Turabian StyleSohel, Amir, Rittik Chandra Das Turjy, Sarbajit Paul Bappy, Md Assaduzzaman, Ahmed Al Marouf, Jon George Rokne, and Reda Alhajj. 2025. "SkinVisualNet: A Hybrid Deep Learning Approach Leveraging Explainable Models for Identifying Lyme Disease from Skin Rash Images" Machine Learning and Knowledge Extraction 7, no. 4: 157. https://doi.org/10.3390/make7040157
APA StyleSohel, A., Turjy, R. C. D., Bappy, S. P., Assaduzzaman, M., Marouf, A. A., Rokne, J. G., & Alhajj, R. (2025). SkinVisualNet: A Hybrid Deep Learning Approach Leveraging Explainable Models for Identifying Lyme Disease from Skin Rash Images. Machine Learning and Knowledge Extraction, 7(4), 157. https://doi.org/10.3390/make7040157

