Machine Learning in Geosciences: A Review of Complex Environmental Monitoring Applications
Abstract
:1. Introduction
2. Overview of the Limits and Challenges of Geosciences in Machine Learning Algorithms
2.1. Supervised ML Algorithms
2.2. Unsupervised, Semi-Supervised, and Reinforcement Learning ML Algorithms
2.3. Deep Learning
2.4. Explainable AI and Other Algorithms
3. Environmental Monitoring Applications in Geosciences
3.1. Quarry and Landfill Monitoring ML Application
3.2. Coastal Dunes Preservation ML Application
3.3. Water Discharges into the Sea ML Application
3.4. Contaminated Industrial Water and Soil Matrix ML Application
Fields | Reference | Year | Input Data | Methods | Output | Model |
---|---|---|---|---|---|---|
Landfill | [53] | 2024 | Spatial and environmental data | MCDM, fuzzy set theory, XAI | Map classification (landfill site potential zones (LSPZ)) | ML |
[56] | 2023 | Spatial numerical and categorical data | SHAP, LIME, PU | Risk maps, model performance metrics | ML | |
[57] | 2023 | Data extracted from GIS mapped with data from different sources | CA | Group similar characteristics classification | ML | |
[58] | 2022 | Online sources and camera images | mp-CNN | Image classification | DL | |
[59] [60] | 2021 | Satellite and imagery date | CNN, RsNet50, FPN | Image classification | DL | |
[61] | 2021 | Unmanned aerial vehicle images | SSD, DL | Object detection | DL | |
[62] | 2020 | Remote sensing (RS) high-resolution satellite images | DOT | Location identification and classification | Heuristic | |
[63] | 2020 | Real-time video stream from a surveillance camera | YOLOv3 | Object detection and recognition | DL | |
Quarries—mines | [64] | 2023 | Public georeferenced data | X-means, RF | Geospatial probability map to improve strategic planning | ML |
[65] | 2023 | Drone database imagines | CNN + (NC, RF, DT, GNB) | Object identification | DL | |
[66] | 2023 | Environmental data | BNN + (GB, K-N, DT, RF) | Predicting the peak particle velocity (PPV) values | ML | |
[67] | 2022 | Subsidence environmental data | DT | Feature importance (relationship between tunneling-induced ground subsidence and correlated factors) | ML | |
[68] | 2021 | Sentinel 1 data, velocity maps spanning | CNN | Detection of deformation areas | DL | |
[69] | 2021 | Explosive charge weight per delay and the distance from the blast | DT | Predicting the peak particle velocity (PPV) values | ML | |
Safeguarding coastal dunes | [73] | 2023 | Georeferenced data (UAV–LIDAR and UAV–DAP point clouds) | Regression model based on GA | Equation for ground elevation, relative importance of predictors, interpretability | GA |
RF | Predicted ground elevation | ML | ||||
[74] | 2023 | Aerial imagines | ISODATA | Image classification | ML | |
[75] | 2021 | Multispectral data | ANN, SVM, RF | High-resolution mapping | ML | |
[76] | 2021 | Satellite data | K-NN, DT, AdaBoost, RUSBoost, SVM | Land cover map | ML | |
[77] | 2019 | Aerial imagines | GP | Probabilistic parameterization of wave runup | ML | |
Discharges into the sea | [78] | 2023 | Satellite data | Deeplabv3+- | Object detection | DL |
[79] | 2023 | Satellite data | SLR, PKR | Surface turbidity | ML | |
[80] | 2022 | Satellite data | SVM, RF, ANN | Time-series suspended sediment discharge | ML | |
[81] | 2022 | Upstream–downstream multi-station data | RF, GPR, SVR, DT, LSSVM, MARS | Daily averaged discharge | ML | |
[82] | 2018 | Monthly averages of flows and monthly cumulative rainfall in the aquifer basin | M5P RT, RF, SVR | Prediction of the flow rate | ML | |
Complex industrial contamination—Water | [87] | 2024 | Chlorophyll water content | CC-NMI, PCA, DT, RF-RFE, MLR, MLP, SVR | Eutrophication prediction and risk assessments | ML |
[88] | 2023 | Multi-source remote sensing data | Self-optimizing algorithm | Prediction performance of water quality parameters | ML | |
[89] | 2021 | Dissolved oxygen | LSTM, RNN | Prediction model | ML | |
[90] | 2020 | Water parameter sets | DT, RF, DCF | Perdition water quality | ML | |
[91] | 2020 | Water images | CNN | Water image classification | ML | |
[92] | 2020 | Water parameter sets | CA, PCA | Data classification | ML | |
Complex industrial contamination—Soil | [93] | 2023 | Heavy metal content, spatial information | ANNs, RF, XGboost | Predicting soil heavy metal (HM) pollution assessment | ML |
[94] | 2022 | Environmental variables | RF, cubist | Prediction of heavy metals in soils | ML | |
[95] | 2021 | Environmental variables | RF | Environmental variables predictions | ML | |
[96] | 2020 | Environmental parameters | SVM, MLP, RF, ERF | The risk map level in the soil | ML | |
[97] | 2020 | Soil concentrations, land use types | RF, ANN, SVM | Map spatial pattern concentration | ML |
4. Conclusions
5. Outlook and Future Research
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, Y.E.; O’Malley, D.; Beroza, G.; Curtis, A.; Johnson, P. Machine Learning Developments and Applications in Solid-Earth Geosciences: Fad or Future? J. Geophys. Res. Solid Earth 2023, 128, e2022JB026310. [Google Scholar] [CrossRef]
- Sören, J.; Fontoura do Rosário, Y.; Fafoutis, X. Machine Learning in Geoscience Applications of Deep Neural Networks in 4D Seismic Data Analysis. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 2020. [Google Scholar]
- Bhattacharya, S. Summarized Applications of Machine Learning in Subsurface Geosciences. In A Primer on Machine Learning in Subsurface Geosciences; SpringerBriefs in Petroleum Geoscience & Engineering; Springer: Berlin/Heidelberg, Germany, 2021; pp. 123–165. [Google Scholar] [CrossRef]
- Zhang, W.; Gu, X.; Tang, L.; Yin, Y.; Liu, D.; Zhang, Y. Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge. Gondwana Res. 2022, 109, 1–17. [Google Scholar] [CrossRef]
- Fradkov, A.L. Early History of Machine Learning. IFAC-PapersOnLine 2020, 53, 1385–1390. [Google Scholar] [CrossRef]
- Nilsson, N.J. The Quest for Artificial Intelligence: A History of Ideas and Achievements; Cambridge University Press: Cambridge, UK, 2011; pp. 1–562. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, K.; Bagheri, M.; Burken, J.G.; Gu, A.; Li, B.; Ma, X.; Marrone, B.L.; Ren, Z.J.; Schrier, J.; et al. Machine Learning: New Ideas and Tools in Environmental Science and Engineering. Environ. Sci. Technol. 2021, 55, 12741–12754. [Google Scholar] [CrossRef]
- Clarivate—Data, Insights and Analytics for the Innovation Lifecycle. Available online: https://clarivate.com/ (accessed on 1 February 2024).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Scornet, E.; Biau, G.; Vert, J.P. Consistency of random forests. Ann. Statist. 2015, 43, 1716–1741. [Google Scholar] [CrossRef]
- Suthaharan, S. Support Vector Machine. In Machine Learning Models and Algorithms for Big Data Classification; Springer: Berlin/Heidelberg, Germany, 2016; Volume 36, pp. 207–235. [Google Scholar] [CrossRef]
- Schölkopf, B. SVMs—A practical consequence of learning theory. IEEE Intell. Syst. Their Appl. 1998, 13, 18–21. [Google Scholar] [CrossRef]
- Bisong, E. Logistic Regression. Build. Mach. Learn. Deep Learn. Model. Google Cloud Platf. 2019, 1, 243–250. [Google Scholar] [CrossRef]
- Domínguez-Almendros, S.; Benítez-Parejo, N.; Gonzalez-Ramirez, A.R. Logistic regression models. Allergol. Immunopathol. 2011, 39, 295–305. [Google Scholar] [CrossRef]
- Wang, S.-C. Artificial Neural Network. Interdiscip. Comput. Java Program. 2003, 743, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Han, Y.; So, S.S. Overview of artificial neural networks. Methods Mol. Biol. 2008, 458, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Krogh, A. What are artificial neural networks? Nat. Biotechnol. 2008, 26, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Kingsford, C.; Salzberg, S.L. What are decision trees? Nat. Biotechnol. 2008, 26, 1011–1013. [Google Scholar] [CrossRef] [PubMed]
- de Ville, B. Decision trees. Wiley Interdiscip. Rev. Comput. Stat. 2013, 5, 448–455. [Google Scholar] [CrossRef]
- Zhang, Z. Introduction to machine learning: K-nearest neighbors. Ann. Transl. Med. 2016, 4, 218. [Google Scholar] [CrossRef] [PubMed]
- Kramer, O. K-Nearest Neighbors. In Dimensionality Reduction with Unsupervised Nearest Neighbors; Springer: Berlin/Heidelberg, Germany, 2013; Volume 51, pp. 13–23. [Google Scholar] [CrossRef]
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Bishop, C.M. Bayesian Neural Networks. J. Braz. Comput. Soc. 1997, 4, 61–68. [Google Scholar] [CrossRef]
- Chang, D.T. Bayesian Neural Networks: Essentials. arXiv 2021, arXiv:2106.13594. [Google Scholar]
- Alshari, E.A.; Abdulkareem, M.B.; Gawali, B.W. Classification of land use/land cover using artificial intelligence (ANN-RF). Front. Artif. Intell. 2023, 5, 964279. [Google Scholar] [CrossRef]
- Rolf, E.; Proctor, J.; Carleton, T.; Bolliger, I.; Shankar, V.; Ishihara, M.; Recht, B.; Hsiang, S. A generalizable and accessible approach to machine learning with global satellite imagery. Nat. Commun. 2021, 12, 4392. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chu, L.; Pei, J.; Liu, W.; Bian, J. Model complexity of deep learning: A survey. Knowl. Inf. Syst. 2021, 63, 2585–2619. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, D.C. Unifying complexity science and machine learning. Front. Complex Syst. 2023, 1, 1235202. [Google Scholar] [CrossRef]
- Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable, 2nd ed.; Independent Publishers Group: Chicago, IL, USA, 2022. [Google Scholar]
- Robert, C. Machine Learning, a Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2014; Volume 27, ISBN 9780262305242. [Google Scholar]
- Abdalla, H.B. A brief survey on big data: Technologies, terminologies and data-intensive applications. J. Big Data 2022, 9, 107. [Google Scholar] [CrossRef] [PubMed]
- Sabharwal, R.; Miah, S.J. A new theoretical understanding of big data analytics capabilities in organizations: A thematic analysis. J. Big Data 2021, 8, 159. [Google Scholar] [CrossRef]
- Zhou, L.; Pan, S.; Wang, J.; Vasilakos, A.V. Machine learning on big data: Opportunities and challenges. Neurocomputing 2017, 237, 350–361. [Google Scholar] [CrossRef]
- Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, H.A.; Kumar, V. Machine Learning for the Geosciences: Challenges and Opportunities. IEEE Trans. Knowl. Data Eng. 2019, 31, 1544–1554. [Google Scholar] [CrossRef]
- He, H.; Ming, Z.; Zhang, J.; Wang, L.; Yang, R.; Chen, T.; Zhou, F. Robust Estimation of Landslide Displacement from Multitemporal UAV Photogrammetry-Derived Point Clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 6627–6641. [Google Scholar] [CrossRef]
- Ragnoli, M.; Esposito, P.; Stornelli, V.; Barile, G.; Santis, E.D.; Sciarra, N. A LoRa-based Wireless Sensor Network monitoring system for urban areas subjected to landslide. In Proceedings of the 2023 8th International Conference on Cloud Computing and Internet of Things, Okinawa, Japan, 22–24 September 2023; pp. 91–97. [Google Scholar] [CrossRef]
- Dramsch, J.S. 70 years of machine learning in geoscience in review. Adv. Geophys. 2020, 61, 1–55. [Google Scholar] [CrossRef]
- Osisanwo, F.Y.; Akinsola JE, T.; Awodele, O.; Hinmikaiye, J.O.; Olakanmi, O.; Akinjobi, J. Supervised Machine Learning Algorithms: Classification and Comparison. Int. J. Comput. Trends Technol. 2017, 48, 128–138. [Google Scholar] [CrossRef]
- Singh, A.; Thakur, N.; Sharma, A. A review of supervised machine learning algorithms. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016. [Google Scholar]
- Abdolrasol, M.G.M.; Suhail Hussain, S.M.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, J.A.; Mekhilef, S.; Milad, A. Artificial neural networks based optimization techniques: A review. Electronic 2021, 10, 2689. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Cover, T.M.; Hart, P.E. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Chervonenkis, A.Y. Early history of support vector machines. Empir. Inference Festschrift Honor Vladimir N. Vapnik 2013, 13–20. [Google Scholar] [CrossRef]
- Tyagi, K.; Rane, C.; Sriram, R.; Manry, M. Unsupervised learning. Artif. Intell. Mach. Learn. EDGE Comput. 2022, 33–52. [Google Scholar] [CrossRef]
- Mahesh, B. Machine Learning Algorithms—A Review. Int. J. Sci. Res. 2020, 9, 381–386. [Google Scholar] [CrossRef]
- Dabrowska, D.; Rykala, W.; Nourani, V. Causes, Types and Consequences of Municipal Waste Landfill Fires—Literature Review. Sustainability 2023, 15, 5713. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Maxianová, A.; Winkler, J.; Adamcová, D.; Podlasek, A. Environmental consequences and the role of illegal waste dumps and their impact on land degradation. Land Use Policy 2019, 89, 104234. [Google Scholar] [CrossRef]
- Iravanian, A.; Ravari, S.O. Types of Contamination in Landfills and Effects on The Environment: A Review Study. IOP Conf. Ser. Earth Environ. Sci. 2020, 614, 012083. [Google Scholar] [CrossRef]
- Ozbay, G.; Jones, M.; Gadde, M.; Isah, S.; Attarwala, T. Design and Operation of Effective Landfills with Minimal Effects on the Environment and Human Health. J. Environ. Public Health 2021, 2021, 6921607. [Google Scholar] [CrossRef] [PubMed]
- Massarelli, C. Fast detection of significantly transformed areas due to illegal waste burial with a procedure applicable to Landsat images. Int. J. Remote Sens. 2018, 39, 754–769. [Google Scholar] [CrossRef]
- Al Awadh, M.; Mallick, J. A decision-making framework for landfill site selection in Saudi Arabia using explainable artificial intelligence and multi-criteria analysis. Environ. Technol. Innov. 2024, 33, 103464. [Google Scholar] [CrossRef]
- Massarelli, C.; Muolo, M.R.; Uricchio, V.F.; Dongiovanni, N.; Palumbo, R. Improving environmental monitoring against the risk from uncontrolled abandonment of waste containing asbestos. The DroMEP project. In Geomatics Workbooks n° 12—“FOSS4G Europe Como 2015”; FOSS4G Europe 2015: Como, Italy, 2015. [Google Scholar]
- Massarelli, C.; Uricchio, V.F. The Contribution of Open Source Software in Identifying Environmental Crimes Caused by Illicit Waste Management in Urban Areas. Urban Sci. 2024, 8, 21. [Google Scholar] [CrossRef]
- Geng, J.; Ding, Y.; Xie, W.; Fang, W.; Liu, M.; Ma, Z.; Yang, J.; Bi, J. An ensemble machine learning model to uncover potential sites of hazardous waste illegal dumping based on limited supervision experience. Fundam. Res. 2023; in press. [Google Scholar] [CrossRef]
- Massarelli, C.; Binetti, M.S.; Triozzi, M.; Uricchio, V.F. A First Step towards Developing a Decision Support System Based on the Integration of Environmental Monitoring Activities for Regional Water Resource Protection. Hydrology 2023, 10, 174. [Google Scholar] [CrossRef]
- Shahab, S.; Anjum, M. Solid Waste Management Scenario in India and Illegal Dump Detection Using Deep Learning: An AI Approach towards the Sustainable Waste Management. Sustainability 2022, 14, 15896. [Google Scholar] [CrossRef]
- Torres, R.N.; Fraternali, P. Learning to Identify Illegal Landfills through Scene Classification in Aerial Images. Remote Sens. 2021, 13, 4520. [Google Scholar] [CrossRef]
- Torres, R.N.; Fraternali, P. AerialWaste dataset for landfill discovery in aerial and satellite images. Sci. Data 2023, 10, 63. [Google Scholar] [CrossRef]
- Youme, O.; Bayet, T.; Dembele, J.M.; Cambier, C. Deep Learning and Remote Sensing: Detection of Dumping Waste Using UAV. Procedia Comput. Sci. 2021, 185, 361–369. [Google Scholar] [CrossRef]
- Kazaryan, M.; Simonyan, A.; Simavoryan, S.; Ulitina, E.; Aramyan, R. Waste disposal facilities monitoring based on high-resolution information features of space images. E3S Web Conf. 2020, 157, 02029. [Google Scholar] [CrossRef]
- De Carolis, B.; Ladogana, F.; MacChiarulo, N. YOLO TrashNet: Garbage Detection in Video Streams. In Proceedings of the 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), Bari, Italy, 27–29 May 2020. [Google Scholar] [CrossRef]
- Larrea-Gallegos, G.; Kahhat, R.; Vázquez-Rowe, I.; Parodi, E. A machine learning approach to understand how accessibility influences alluvial gold mining expansion in the Peruvian Amazon. Case Stud. Chem. Environ. Eng. 2023, 7, 100353. [Google Scholar] [CrossRef]
- Fernández-Alonso, D.; Fernández-Lozano, J.; García-Ordás, M.T. Convolutional neural networks for accurate identification of mining remains from UAV-derived images. Appl. Intell. 2023, 53, 30469–30481. [Google Scholar] [CrossRef]
- Fissha, Y.; Ikeda, H.; Toriya, H.; Adachi, T.; Kawamura, Y. Application of Bayesian Neural Network (BNN) for the Prediction of Blast-Induced Ground Vibration. Appl. Sci. 2023, 13, 3128. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, W.; Gutierrez, M. Mapping Tunneling-Induced Uneven Ground Subsidence Using Sentinel-1 SAR Interferometry: A Twin-Tunnel Case Study of Downtown Los Angeles, USA. Remote Sens. 2022, 15, 202. [Google Scholar] [CrossRef]
- Anantrasirichai, N.; Biggs, J.; Kelevitz, K.; Sadeghi, Z.; Wright, T.; Thompson, J.; Achim, A.M.; Bull, D. Detecting Ground Deformation in the Built Environment Using Sparse Satellite InSAR Data with a Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2940–2950. [Google Scholar] [CrossRef]
- Moustafa, S.S.R.; Abdalzaher, M.S.; Yassien, M.H.; Wang, T.; Elwekeil, M.; Hafiez, H.E.A. Development of an Optimized Regression Model to Predict Blast-Driven Ground Vibrations. IEEE Access 2021, 9, 31826–31841. [Google Scholar] [CrossRef]
- Beuzen, T.; Splinter, K. Machine learning and coastal processes. In Sandy Beach Morphodynamics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 689–710. [Google Scholar] [CrossRef]
- Nordstrom, K.F. Coastal Dunes. In Coastal Environments and Global Change; Wiley: Hoboken, NJ, USA,, 2015; pp. 178–193. [Google Scholar] [CrossRef]
- Łabuz, T.A. Coastal Dunes: Changes of Their Perception and Environmental Management. In Environmental Management and Governance. Coastal Research Library; Springer: Berlin/Heidelberg, Germany, 2015; Volume 8, pp. 323–410. [Google Scholar] [CrossRef]
- Pinton, D.; Canestrelli, A.; Moon, R.; Wilkinson, B. Estimating Ground Elevation in Coastal Dunes from High-Resolution UAV-LIDAR Point Clouds and Photogrammetry. Remote Sens. 2023, 15, 226. [Google Scholar] [CrossRef]
- Mckeehan, K.G.; Arbogast, A.F. The geography and progression of blowouts in the coastal dunes along the eastern shore of Lake Michigan since 1938. Quat. Res. 2023, 115, 25–45. [Google Scholar] [CrossRef]
- Gonzalez-Moodie, B.; Daiek, S.; Lorenzo-Trueba, J.; Varde, A.S. Multispectral Drone Data Analysis on Coastal Dunes. In Proceedings of the Proceedings—2021 IEEE International Conference on Big Data, Big Data 2021, Orlando, FL, USA, 15–18 December 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 5903–5905. [Google Scholar]
- Mohammadpoor, M.; Eshghizadeh, M. Introducing an intelligent algorithm for extraction of sand dunes from Landsat satellite imagery in terrestrial and coastal environments. J. Coast. Conserv. 2021, 25, 3. [Google Scholar] [CrossRef]
- Beuzen, T.; Goldstein, E.B.; Splinter, K.D. Ensemble models from machine learning: An example of wave runup and coastal dune erosion. Nat. Hazards Earth Syst. Sci. 2019, 19, 2295–2309. [Google Scholar] [CrossRef]
- Liao, L.; Zhao, Q.; Song, W. Monitoring of Oil Spill Risk in Coastal Areas Based on Polarimetric SAR Satellite Images and Deep Learning Theory. Sustainability 2023, 15, 14504. [Google Scholar] [CrossRef]
- Magrì, S.; Ottaviani, E.; Prampolini, E.; Federici, B.; Besio, G.; Fabiano, B. Application of machine learning techniques to derive sea water turbidity from Sentinel-2 imagery. Remote Sens. Appl. Soc. Environ. 2023, 30, 100951. [Google Scholar] [CrossRef]
- Mohsen, A.; Kovács, F.; Kiss, T. Remote Sensing of Sediment Discharge in Rivers Using Sentinel-2 Images and Machine-Learning Algorithms. Hydrology 2022, 9, 88. [Google Scholar] [CrossRef]
- Thanh, H.V.; Van Binh, D.; Kantoush, S.A.; Nourani, V.; Saber, M.; Lee, K.K.; Sumi, T. Reconstructing Daily Discharge in a Megadelta Using Machine Learning Techniques. Water Resour. Res. 2022, 58, e2021WR031048. [Google Scholar] [CrossRef]
- Granata, F.; Saroli, M.; De Marinis, G.; Gargano, R. Machine learning models for spring discharge forecasting. Geofluids 2018, 2018, 8328167. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A review of the application of machine learning in water quality evaluation. Eco-Environ. Health 2022, 1, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Ma, C.; Ma, J.; Huangfu, X.; He, Q. Machine learning in natural and engineered water systems. Water Res. 2021, 205, 117666. [Google Scholar] [CrossRef] [PubMed]
- Lowe, M.; Qin, R.; Mao, X. A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring. Water 2022, 14, 1384. [Google Scholar] [CrossRef]
- Zhu, Y.; Yeung, C.H.; Lam, E.Y. Microplastic pollution monitoring with holographic classification and deep learning. J. Phys. Photonics 2021, 3, 024013. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, J. Prediction of chlorophyll a and risk assessment of water blooms in Poyang Lake based on a machine learning method. Environ. Pollut. 2024, 347, 123501. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wang, B.; Wu, Y.; Wang, Q.; Huang, Z.; Wang, C. Urban river water quality monitoring based on self-optimizing machine learning method using multi-source remote sensing data. Ecol. Indic. 2023, 146, 109750. [Google Scholar] [CrossRef]
- Zhi, W.; Feng, D.; Tsai, W.P.; Sterle, G.; Harpold, A.; Shen, C.; Li, L. From hydrometeorology to river water quality: Can a deep learning model predict dissolved oxygen at the continental scale? Environ. Sci. Technol. 2021, 55, 2357–2368. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Chen, H.; Zhou, C.; Huang, Y.; Qi, X.; Shen, R.; Liu, F.; Zuo, M.; Zou, X.; Wang, J.; et al. Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Res. 2020, 171, 115454. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, X.; Xiao, Y.; Feng, J. Attention Neural Network for Water Image Classification under IoT Environment. Appl. Sci. 2020, 10, 909. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kumar, R.; Bhardwaj, R.; Kumar Thukral, A.; Rodrigo-Comino, J. Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 1–16. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, J.; Liu, Q.; Dou, L.; Qu, Y.; Shi, H.; Sun, Y.; Chen, H.; Tian, Y.; Wu, F. Accurate Prediction of Soil Heavy Metal Pollution Using an Improved Machine Learning Method: A Case Study in the Pearl River Delta, China. Environ. Sci. Technol. 2023, 57, 17751–17761. [Google Scholar] [CrossRef] [PubMed]
- Azizi, K.; Ayoubi, S.; Nabiollahi, K.; Garosi, Y.; Gislum, R. Predicting heavy metal contents by applying machine learning approaches and environmental covariates in west of Iran. J. Geochemical Explor. 2022, 233, 106921. [Google Scholar] [CrossRef]
- Yang, S.; Taylor, D.; Yang, D.; He, M.; Liu, X.; Xu, J. A synthesis framework using machine learning and spatial bivariate analysis to identify drivers and hotspots of heavy metal pollution of agricultural soils. Environ. Pollut. 2021, 287, 117611. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Cao, Y.; O’Connor, D.; Zhu, J.; Tsang, D.C.W.; Zou, B.; Hou, D. Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field. Environ. Pollut. 2021, 270, 116281. [Google Scholar] [CrossRef]
- Jia, X.; O’Connor, D.; Shi, Z.; Hou, D. VIRS based detection in combination with machine learning for mapping soil pollution. Environ. Pollut. 2021, 268, 115845. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yin, S.; Chen, Y.; Shao, S.; Wu, J.; Fan, M.; Chen, F.; Gao, C. Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China. J. Clean. Prod. 2020, 273, 122858. [Google Scholar] [CrossRef]
- Chen, H.; Chen, A.; Xu, L.; Xie, H.; Qiao, H.; Lin, Q.; Cai, K. A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources. Agric. Water Manag. 2020, 240, 106303. [Google Scholar] [CrossRef]
Abbreviation | Meaning | Abbreviation | Meaning |
---|---|---|---|
Adaboost | Adaptive Boosting | LSSVM | Vector Support Machines for Least Squares |
ANN | Artificial Neural Network | LSTM | Long Short-Term Memory |
BNN | Bayesian Neural Network | MARS | Multivariate Adaptive Regression Splines |
CA | Cluster Analysis | ML | Machine Learning |
CC-NMI | Cluster Confusion Normalized Mutual Information | mp-CNN | Multipath Convolutional Neural Network |
CNN | Convolutional Neural Network | MPL | Multilayer Perceptron |
DL | Deep Learning | NC | Nearest Centroid |
DOT | Discrete Orthogonal Transformations | NN | Neural Network |
DR | Dimensionality Reduction | OD | Object Detection |
DT | Decision Tree | PCA | Principal Component Analysis |
Extra-Trees | Extremely Randomized Trees | PKR | Polynomial Kernel Regression |
FF | Futures Filtering | PU | Positive-Unlabeled Learning Algorithm |
FPN | Feature Pyramid Network | RF | Random Forest |
FST | Fuzzy Set Theory | RNN | Recurrent Neural Network |
GA | Genetic Algorithm | RUSBoost | Random Under-Sampling Boosting |
GNB | Gaussian Naive Bayes | SHAP | Shapley Additive Explanations |
GANs | Generative Adversarial Networks | SLR | Stepwise Linear Regression |
GPR | Gaussian Process Regression | SSD | Single Shot Detector Algorithm |
ISODATA method | Iterative Self-Organizing Data Analysis Technique | SVM | Support Vector Machine |
kNN | k-Nearest Neighbors | U-Net | Unique Architecture of the Network is a “U” Shape (CNN) |
LIME | Local Interpretable Model-Agnostic Explanations | XAI | eXplainable Artificial Intelligence |
LLMs | Large Language Models | YOLOv3 | You Only Look Once, Version 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binetti, M.S.; Massarelli, C.; Uricchio, V.F. Machine Learning in Geosciences: A Review of Complex Environmental Monitoring Applications. Mach. Learn. Knowl. Extr. 2024, 6, 1263-1280. https://doi.org/10.3390/make6020059
Binetti MS, Massarelli C, Uricchio VF. Machine Learning in Geosciences: A Review of Complex Environmental Monitoring Applications. Machine Learning and Knowledge Extraction. 2024; 6(2):1263-1280. https://doi.org/10.3390/make6020059
Chicago/Turabian StyleBinetti, Maria Silvia, Carmine Massarelli, and Vito Felice Uricchio. 2024. "Machine Learning in Geosciences: A Review of Complex Environmental Monitoring Applications" Machine Learning and Knowledge Extraction 6, no. 2: 1263-1280. https://doi.org/10.3390/make6020059
APA StyleBinetti, M. S., Massarelli, C., & Uricchio, V. F. (2024). Machine Learning in Geosciences: A Review of Complex Environmental Monitoring Applications. Machine Learning and Knowledge Extraction, 6(2), 1263-1280. https://doi.org/10.3390/make6020059