Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends
Abstract
1. Introduction
2. Method of Literature Research Executed
3. Treatments and Pre-Treatments of Wood Specimens
Modification of Wood
4. The Case of the Novel “Transparent” Wood Composites
5. Types of Polymers Applied in WPCs: Plastics and Resin Examples
5.1. Polystyrene for Impregnation of Wood
5.2. Polyurethane for Impregnation of Wood
6. Discussion
6.1. Scientific Impact of WPC Manufacturing
- The reduction of used synthetic polymers in waste through the development of WPCs using hardwood species, from low-value and low-cost (considered to be waste) invasive fast-growing species.
- Addressing the problem of the deterioration of various properties of recycled polymers during recycling processes through the development of WPCs using novel modification routes.
- The development of novel impregnation routes and compatibilization strategies for increasing the hydrophobicity of wood, apart from reagents, using supercritical CO2, tall oil and tannins.
- The development of fully biodegradable solid materials with enhanced properties due to reinforcement by recycled polymers.
- The evaluation of the recycling potential of the developed materials.
6.2. Social Impact, Industrial and Environmental Impact
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CASE | Coatings, adhesives, Sealants, Elastomers |
EC | European Commission |
EU | European Union |
EMEA | Europe, the Middle East and Africa |
HDPE | High-density Polyethylene |
LCA | Life cycle assessment |
LDPE | Low-density Polyethylene |
PA-6 | Polyamide-6 (or nylon-6) |
PE & rPE | Polyethylene and recycled Polyethylene |
PEG | Poly(ethylene glycol) |
PHA | Polyhydroxyalkanoates |
PLA & rPLA | Poly(lactic acid) and recycled Poly(lactic acid) |
PMMA | Poly(methyl methacrylate) |
PP & rPP | Polypropylene and recycled Polypropylene |
PS | Polystyrene |
PVA | Poly(vinyl acetate) |
PVC & rPVC | Poly(vinyl chloride) and recycled Poly(vinyl chloride) |
PU | Polyurethane |
WPC | Wood/Polymer Composites |
UV | Ultraviolet |
References
- Stevens, E. Green Plastics: An Introduction to the New Science of Biodegradable Plastics; Princeton University Press: Princeton, NJ, USA, 2022; pp. 83–134. [Google Scholar]
- European Commission. Press Release. 2018. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_18_3927 (accessed on 25 June 2025).
- Álvarez-Chávez, C.R.; Edwards, S.; Moure-Eraso, R.; Geiser, K. Sustainability of bio-based plastics: General comparative analysis and recommendations for improvement. J. Clean. Prod. 2012, 23, 47–56. [Google Scholar] [CrossRef]
- Available online: https://environment.ec.europa.eu/strategy/plastics-strategy_en (accessed on 25 June 2025).
- Available online: https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en (accessed on 25 June 2025).
- El-Haggar, S.M.; Kamel, M.A. Wood Plastic Composites. In Advances in Composite Materials—Analysis of Natural and Man-Made Materials; Pavla, T., Ed.; IntechOpen: London, UK, 2011. [Google Scholar]
- Kumar, N.; Mireja, S.; Khandelwal, V.; Arun, B.; Manik, G. Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: A strength analysis and morphological study. Compos. Part B Eng. 2017, 109, 277–285. [Google Scholar] [CrossRef]
- Dinh Vu, N.; Thi Tran, H.; Duy Nguyen, T. Characterization of polypropylene green composites reinforced by cellulose fibers extracted from rice straw. Int. J. Polym. Sci. 2018, 1, 1813847. [Google Scholar] [CrossRef]
- Fei, P.; Fei, B.; Yu, Y.; Xiong, H.; Tan, J. Thermal properties and crystallization behavior of bamboo fiber/high-density polyethylene composites: Nano-TiO2effects. J. Appl. Polym. Sci. 2014, 131, 39846. [Google Scholar] [CrossRef]
- Plastics Europe Association of Plastics Manufacturers Plastics—The Facts 2019 An analysis of European Plastics Production, Demand and Waste Data. 2019. Available online: https://www.plasticseurope.org/en/resources/market-data (accessed on 25 June 2025).
- Magnin, A.; Pollet, E.; Phalip, V.; Avérous, L. Evaluation of biological degradation of polyurethanes. Biotechnol. Adv. 2020, 39, 107457. [Google Scholar] [CrossRef]
- Abral, H.; Ariksa, J.; Mahardika, M.; Handayani, D.; Aminah, I.; Sandrawati, N.; Pratama, A.B.; Fajri, N.; Sapuan, S.; Ilyas, R. Transparent and antimicrobial cellulose film from ginger nanofiber. Food Hydrocoll. 2020, 98, 105266. [Google Scholar] [CrossRef]
- Bi, Z.; Li, T.; Su, H.; Ni, Y.; Yan, L. Transparent wood film incorporating carbon dots as encapsulating material for whitelight-emitting diodes. ACS Sustain. Chem. Eng. 2018, 6, 9314. [Google Scholar] [CrossRef]
- Frey, M.; Widner, D.; Segmehl, J.S.; Casdorff, K.; Keplinger, T.; Burgert, I. Delignified and Densified Cellulose Bulk Materials with Excellent Tensile Properties for Sustainable Engineering. ACS Appl. Mater. Interfaces 2018, 10, 5030–5037. [Google Scholar] [CrossRef]
- Frey, M.; Widner, D.; Segmehl, J.S.; Casdorff, K.; Keplinger, T.; Burgert, I. A highly transparent compressed wood prepared by cell wall densification. Wood Sci. Technol. 2022, 56, 669–686. [Google Scholar] [CrossRef]
- Oriez, V.; Peydecastaing, J.; Pontalier, P.Y. Lignocellulosic biomass mild alkaline fractionation and resulting extract purification processes: Conditions, yields, and purities. Clean Technol. 2020, 2, 91–115. [Google Scholar] [CrossRef]
- Fink, S. Transparent Wood—A New Approach in the Functional Study of Wood Structure. Holzforschung 1992, 46, 403–408. [Google Scholar] [CrossRef]
- Yano, H. Potential strength for resin-impregnated compressed wood. J. Mater. Sci. Lett. 2001, 20, 1127–1129. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Q.; Yu, S.; Yan, M.; Berglund, L. Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance. Biomacromolecules 2016, 17, 1358–1364. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, Y.; Zhu, S.; Xu, L.; Jia, C.; Dai, J.; Song, J.; Yao, Y.; Wang, Y.; Li, Y.; et al. Anisotropic, Transparent Films with Aligned Cellulose Nanofibers. Adv. Mater. 2017, 29, 1606284. [Google Scholar] [CrossRef]
- Hubbell, C.A.; Ragauskas, A.J. Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresour. Technol. 2010, 101, 7410–7415. [Google Scholar] [CrossRef]
- Wu, X.; Kong, Z.; Yao, X.; Gan, J.; Zhan, X.; Wu, Y. Transparent wood with self-cleaning properties for next-generation smart photovoltaic panels. Appl. Surf. Sci. 2023, 613, 155927. [Google Scholar] [CrossRef]
- Van, H.L.; Cho, S.-W.; Kwon, G.; Lee, D.-Y.; Ma, S.-Y.; Bandi, R.; Kim, J.K.; Han, S.-Y.; Dadigala, R.; Lee, S.-H. Fabrication of eco-friendly transparent wood for UV-shielding functionality. Ind. Crops Prod. 2023, 201, 116918. [Google Scholar] [CrossRef]
- Zhu, M.; Song, J.; Li, T.; Gong, A.; Wang, Y.; Dai, J.; Yao, Y.; Luo, W.; Henderson, D.; Hu, L. Highly Anisotropic, Highly Transparent Wood Composites. Adv. Mater. 2016, 28, 5181–5187. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; O’dWyer, J.P.; Chang, V.S.; Granda, C.B.; Holtzapple, M.T. Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. 2008, 99, 3817–3828. [Google Scholar] [CrossRef] [PubMed]
- Gan, W.T.; Gao, L.K.; Xiao, S.L.; Zhang, W.B.; Zhan, X.X.; Li, J. Transparent magnetic wood composites based on immobilizing Fe3O4 nanoparticles into a delignified wood template. J. Mater. Sci. 2017, 52, 3321. [Google Scholar] [CrossRef]
- Fu, Q.; Tu, K.; Goldhahn, C.; Keplinger, T.; Adobes-Vidal, M.; Sorieul, M.; Burgert, I. Luminescent and hydrophobic woodfilms as optical lighting materials. ACSNano 2020, 14, 13775–13783. [Google Scholar]
- Fryer, J. Field Guide for Mapping Post-Fire Soil Burn Severity; U.S. US Depart Agric, Forest Service, Fire Scie Lab: FortCollins, CO, USA, 2010.
- Wechsler, A.; Hiziroglu, S. Some of the properties of wood–plastic composites. Build. Environ. 2007, 42, 2637–2644. [Google Scholar] [CrossRef]
- Ray, S.; Bandyopadhyay, J.; Bousmina, M. Thermal and thermomechanical properties of poly[(butylene succinate)-co-adipate] nanocomposite. Polym. Degrad. Stab. 2007, 92, 802–812. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941. [Google Scholar] [CrossRef] [PubMed]
- Nogi, M.; Yano, H. Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry. Adv. Mater. 2008, 20, 1849–1852. [Google Scholar] [CrossRef]
- Rao, A.N.S.; Nagarajappa, G.B.; Nair, S.; Chathoth, A.M.; Pandey, K.K. Flexible transparent wood prepared from poplar veneer and polyvinyl alcohol. Compos. Sci. Technol. 2019, 182, 107719. [Google Scholar] [CrossRef]
- Yang, T.; Zhong, H.; Xu, C. Fabrication and mechanism analysis of wood polymer composites with improved hydrophobicity, dimensional stability and mechanical strength. Cellulose 2023, 30, 3099–3112. [Google Scholar] [CrossRef]
- Yue, D.; Fu, G.; Jin, Z. Transparent wood prepared by polymer impregnation of rubber wood (Heveabrasiliensis Muell. Arg). BioResouces 2021, 16, 2491–2502. [Google Scholar] [CrossRef]
- Stark, N.M.; Rowlands, R.E. Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites. Wood Fiber Sci. 2003, 35, 167–174. [Google Scholar]
- Clemons, C.M. Wood–plastic composites in the United States: The interfacing of two industries. For. Prod. J. 2002, 52, 10–18. [Google Scholar]
- Bledzki, A.K.; Faruk, O. Wood fibre reinforced polypropylene composites: Effects of fibre treatment and matrix modification. Compos. Sci. Technol. 2006, 66, 558–568. [Google Scholar]
- Mwaikambo, L.Y.; Ansell, M.P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 2002, 84, 2222–2234. [Google Scholar] [CrossRef]
- Stark, N.M.; Matuana, L.M. Characterization of weathered wood–plastic composite surfaces using FTIR spectroscopy, contactangle, and XPS. Polym. Degrad. Stab. 2007, 92, 1883–1890. [Google Scholar] [CrossRef]
- Fabiyi, J.S.; McDonald, A.G.; Morrell, J.J.; Freitag, C. Effects of wood species on durability and chemical changes ofwood–plastic composites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1483–1490. [Google Scholar]
- Butylina, S.; Martikka, O.; Kärki, T. Properties of wood–plastic composites made of milled birch wood and polylactic acid. Compos. Part A Appl. Sci. Manuf. 2011, 42, 618–624. [Google Scholar]
- Pritchard, G. Developments in the use of wood flour and fib resin thermoplastics. Plast. RubberCompos. 2004, 33, 187–194. [Google Scholar]
- Klyosov, A.A. Wood–Plastic Composites; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Clemons, C.M. Wood–plastic composites in the United States. For. Prod. J. 2010, 60, 10–18. [Google Scholar]
- Ondiek, W.; Kondo, M.; Adachi, M.; Macadre, A.; Goda, K. Effect of surface coating and plasma treatment on mechanical properties of wood plastic composites. J. Compos. Sci. 2023, 7, 296. [Google Scholar] [CrossRef]
- Črešnar, K.P.; Bek, M.; Luxbacher, T.; Brunčko, M.; Zemljič, L.F. Insightintothesurfacepropertiesofwoodfiber–polymercomposites. Polymers 2021, 13, 1535. [Google Scholar] [CrossRef]
- Pizzi, A.; Papadopoulos, A.N.; Policardi, F. Wood composites and their polymer binders. Polymers 2020, 12, 1115. [Google Scholar] [CrossRef]
- Fabiyi, J.S.; McDonald, A.G. Effect of wood species on property and weathering performance of wood plastic composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1434–1440. [Google Scholar] [CrossRef]
- Nukala, S.G.; Kong, I.; Kakarla, A.B.; Tshai, K.Y.; Kong, W. Preparation and characterization of wood polymer composites using sustainable raw materials. Polymers 2022, 14, 3183. [Google Scholar] [CrossRef]
- Gregorova, A.; Hrabalova, M.; Kovalcik, R.; Wimmer, R. Surface modification of spruce wood flour and effects on the dynamic fragility of PLA/wood composites. Polym. Eng. Sci. 2011, 51, 143–150. [Google Scholar] [CrossRef]
- Winandy, J.E.; Stark, N.M.; Clemons, C.M. Considerations in recycling of wood–plastic composites. In Proceedings of the 5th Global Wood and Natural Fibre Composites Symposium 2004, Kassel, Germany, 27–28 April 2004; pp. 23–25. [Google Scholar]
- Morrell, J.J.; Stark, N.M.; Pendleton, D.E.; Mcdonald, A.G. Durabilityofwood–plasticcomposites. Wood Des. Focus 2006, 16, 3–8. [Google Scholar]
- Ayrilmis, N.; Jarusombuti, S.; Fueangvivat, V.; Bauchongkol, P. Effect of thermal-treatment of wood fibres on properties offlat-pressed wood plastic composites. Polym. Degrad. Stab. 2011, 96, 818–822. [Google Scholar] [CrossRef]
- Schirp, A.; Wolcott, M.P. Influence of fungal decay and moisture absorption on mechanical properties of extrudedwood–plastic composites. Wood Fiber Sci. 2005, 37, 643–652. [Google Scholar]
- Durmaz, S.; Erdil, Y.Z.; Avci, E. Improvement of technological properties of wood plastic composites reinforced with glass and carbon fibre fabric. Polym. Polym. Compos. 2021, 29 (Suppl. 9), S1457–S1465. [Google Scholar] [CrossRef]
- Wu, C.; Xu, F.; Wang, H.; Liu, H.; Yan, F.; Ma, C. Manufacturing Technologies of Polymer Composites—A Review. Polymers 2023, 15, 712. [Google Scholar] [CrossRef]
- Vercher, J.; Fombuena, V.; Diaz, A.; Soriano, M. Influence of fibre and matrix characteristics on properties and durability of wood–plastic composites in outdoor applications. J. Thermoplast. Compos. Mater. 2018, 33, 477–500. [Google Scholar] [CrossRef]
- Abdellah, A.; Ali, S.F.; Althobaiti, I.O.; El-Rafey, E.; Gad, E.S. Wooden polymer composites of poly(vinylchloride), olive pits flour, and precipitated bio-calcium carbonate. ACS Omega 2021, 6, 23924–23933. [Google Scholar] [CrossRef]
- Nukala, S.G.; Kong, I.; Kakarla, A.B.; Kong, W.; Kong, W. Development of Wood Polymer Composites from Recycled Wood and Plastic Waste: Thermal and Mechanical Properties. J. Compos. Sci. 2022, 6, 194. [Google Scholar] [CrossRef]
- Ashori, A. Wood–plastic composites as promising green-composites for automotive industries. Bioresour. Technol. 2008, 99, 4661–4667. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Fan, M.; Chen, L. Interface and bonding mechanisms of plant fibre composites: An overview. Compos. Part B Eng. 2016, 101, 31–45. [Google Scholar] [CrossRef]
- Xu, X.; He, Z.; Lu, S.; Guo, D.; Yu, J. Enhanced thermal and mechanical properties of lignin/polypropylene wood-plastic composite by using flexible segment-containing reactive compatibilizer. Macromol. Res. 2014, 22, 1084–1091. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, H.K.; Lim, E.; Song, Y. S. Synergistic effect of lignin/polypropylene as a compatibilizer in multiphase eco-composites. Compos. Sci. Technol. 2015, 118, 193–199. [Google Scholar] [CrossRef]
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Available online: https://www.eumonitor.eu/9353000/1/j4nvk6yhcbpeywk_j9vvik7m1c3gyxp/vitgbgip5dwf (accessed on 25 June 2025).
- Directive (EU) 2015/720 of the European Parliament and of the Council of 2015 on Amending Directive 94/62/EC as Regards Reducing the Consumption of Lightweight Plastic Carrier Bags. Available online: https://environment.ec.europa.eu/topics/plastics/plastic-bags_en (accessed on 25 June 2025).
- Directive (EU) 2019/904 of the European Parliament and of the Council of 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment. Available online: https://environment.ec.europa.eu/topics/plastics/single-use-plastics_en (accessed on 25 June 2025).
Chemicals Used | Reaction Conditions | References |
---|---|---|
5% NaClO | Room temperature, 24–48 h | [17] |
NaClO2 | 45 °C, 10 h | [18] |
NaClO2 | 80 °C, 6 h | [19] |
1%NaClO2 | 45 °C, 12 h repeated thrice | [13] |
NaClO2 | Room temperature, 3–5 h | [20] |
CH3COOH + NaClO2 | 70 °C, 2 h repeated thrice | [21] |
CH3COOH + 5% NaClO2 | 85 °C, 6 h | [22] |
0.5 N NaOH + 30% H2O2 6% NaOH | Sunlight exposure, 3.5 h (6% NaOH) Sunlight exposure (90 °C, 6 h) | [23] |
NaOH+Na2SO3 followed by H2O2 | 100 °C, 12 h; 100 °C till yellow color disappears | [24] |
Glacial acetic acid+ H2O2 (1:1) | Immersed overnight; 80 °C, 6 h | [14] |
Peracetic acid | Room temperature, 24–48 h | [25] |
Parameters | Examples |
---|---|
Polymer Type | Polymers, as PMMA or epoxy resins, can be used to impregnate wood. The kind of polymer used determines the final product’s transparency, mechanical strength and other qualities. When compared to virgin polymers, recycled polymers may have differences in molecular structure and characteristics, potentially influencing transparency and strength. |
Molecular Weight | The polymer’s molecular weight influences its viscosity, flowability and adherence to wood fibers. The molecular weights of recycled polymers can vary, causing changes in impregnation efficiency. |
Purity and Contaminants | Depending on their source and manufacturing history, recycled polymers may include impurities or contaminants. |
Cross-Linking | Some polymers, particularly epoxy resins, are thermosetting and can cross-link during curing. The degree of cross-linking can influence the mechanical and thermal qualities of the resultant “translucent” wood. |
Viscosity and Penetration | The viscosity of the polymer solution or melt can affect how well it penetrates and impregnates the wood. Recycled polymers may have different viscosities than virgin polymers, which might impact the impregnation process and the regularity of the resultant translucent wood. |
Adhesion to Wood | The bond between recycled polymers and wood fibers is crucial, and surface properties can vary, potentially impacting their adhesion to the wood substrate. |
Optical Clarity | Polymer optical characteristics, such as the refractive index, might influence the transparency of the final material. Recycled polymers can contribute optical imperfections or changes in refractive index, which can reduce the clarity of clear wood. |
Species | Dimensions | Polymer Used | Wood Pre-Treatments | Process Parameters | Substrate/Base Layers | Applications | References |
---|---|---|---|---|---|---|---|
Pine | Sawdust (100–500 µm) | PP | Alkali treatment (5% NaOH) | Extrusion at 180–200 °C | Concrete base | Decking, fencing | [36,37] |
Bamboo | Fibers (1–2 mm) | PE | Silane coupling agent | Injection molding at 190 °C | Gravel with geotextile | Outdoor furniture | [38,39] |
Oak | Flour (≤100 µm) | PVC | Acetylation | Compression molding at 160 °C | Raised metal frames | Cladding, panels | [40,41] |
Eucalyptus | Particles (500–1000 µm) | PLA | Thermal treatment at 200 °C | Extrusion at 170 °C | Plastic base supports | Interior panels | [42,43] |
Pine | Sawdust (100–500 µm) | rPP | Maleic anhydride grafted PP (MA-g-PP) | Co-extrusion at 190 °C | Concrete slabs | Flooring | [44,45] |
Bamboo | Fibers (1–2 mm) | rPE | Plasma treatment | Injection molding at 200 °C | Gravel with geotextile | Garden furniture | [46,47] |
Oak | Flour (≤100 µm) | rPVC | UV treatment | Compression molding at 160 °C | Raised plastic frames | Wall cladding | [48,49] |
Eucalyptus | Particles (500–1000 µm) | rPLA | Chemical bleaching | Extrusion at 170 °C | Plastic base supports | Ceiling panels | [50,51] |
Pine | Sawdust (100–500 µm) | HDPE | No treatment | Extrusion at 180 °C | Concrete base | Decking | [52,53] |
Bamboo | Fibers (1–2 mm) | LDPE | Alkali treatment (5% NaOH) | Injection molding at 190 °C | Gravel with geotextile | Outdoor benches | [54,55] |
Pine wood flour (Pinus sylvestris) | 40–60 mesh | HDPE | Oven-dried to <2% moisture | Hot-pressing at 170 °C, 24–26 kg/cm2, 15 min | Glass and carbon fiber fabrics | Construction panels | [56] |
Oak, maple, ponderosa pine | 70–235 mesh | PP | None specified | Extrusion molding | None specified | Decking, siding | [57] |
Rice husk residues | Not specified | PVC | None specified | Extrusion molding | None specified | Outdoor decking | [58] |
Birch plywood sanding dust | Not specified | rPP | None specified | Compression molding | None specified | Eco-friendly composites | [59] |
Municipal solid waste wood | Not specified | rPP | MAPP coupling agent | Extrusion at 180–200 °C | None specified | Sustainable construction | [59] |
Spruce, pine, fir | 100–120 mesh | rPP | MA-g-PP coupling agent | Extrusion molding | None specified | Structural components | [59] |
Hardwood fibers | Not specified | PP | MAH-PP coupling agent | Extrusion molding | None specified | Automotive parts | [59] |
Wood sawdust | Not specified | PA-6 | Sequential ball milling | Twin-screw extrusion | None specified | High-performance materials | [59] |
Wood fibers | Not specified | Various thermoplastics | Chemical, mechanical, thermal treatments | Extrusion, injection molding | None specified | Diverse applications | [59] |
Olive pit flour (OPF) | Not explicitly stated; used up to 60 wt% | PVC | Dried; inherent OH groups in cellulose | Melt mixing; filler ratios OPF 50–60 wt%, PBCC 0–15 wt% | Precipitated bio-calcium carbonate as secondary filler | Construction, rigid paneling, thermally stable composite materials | [59] |
Lignin; pine cones; coffee grounds | Not specified; mixed particles | PP, PLA | Coupling agents: maleic anhydride, lignin, tannin derivatives | Extrusion and injection molding with additive ratios 10–30% | PLA/PP blend with phenolic or lignin additives | Biodegradable packaging, automotive parts, construction panels | [60,61,62,63,64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terzopoulou, P.; Achilias, D.S.; Vouvoudi, E.C. Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends. J. Compos. Sci. 2025, 9, 415. https://doi.org/10.3390/jcs9080415
Terzopoulou P, Achilias DS, Vouvoudi EC. Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends. Journal of Composites Science. 2025; 9(8):415. https://doi.org/10.3390/jcs9080415
Chicago/Turabian StyleTerzopoulou, Paschalina, Dimitris S. Achilias, and Evangelia C. Vouvoudi. 2025. "Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends" Journal of Composites Science 9, no. 8: 415. https://doi.org/10.3390/jcs9080415
APA StyleTerzopoulou, P., Achilias, D. S., & Vouvoudi, E. C. (2025). Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends. Journal of Composites Science, 9(8), 415. https://doi.org/10.3390/jcs9080415