Modeling Piezoresistive Behavior of Conductive Composite Sensors via Multi-State Percolation Theory
Abstract
1. Introduction
1.1. Piezoresistive Nano-Composites
1.2. Classical Models
1.3. Multicomponent Effective Medium Approach
2. Methods: Simulation Setup
3. Results
- Conductance vs. volume fraction for a binary percolation case, to establish model parameters.
- Conductance vs. volume fraction for a distribution of gaps between filler particles, using multi-state theory (MCEM).
- Conductance vs. strain for a simple strain vs. gap distribution model using multi-state theory.
- Conductance vs. strain for a more realistic strain vs. gap distribution model using multi-state theory.
3.1. Conductance vs. Volume Franction—Binary Case
3.2. Conductance vs. Volume Franction—Uniform Gap Distribution
3.3. Conductance vs. Strain—Simple Gap Evolution Assumption
3.4. Conductance vs. Strain—Gaps Evolve According to Poisson Strain
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MCEM | Multicomponent effective medium |
GEM | General effective medium |
References
- Pandey, G.; Biswas, A. Estimating Electrical Conductivity of multi-scale composites with conductive nanoparticles using bidirectional time marching percolation network mapping. Comput. Mater. Sci. 2014, 89, 8. [Google Scholar] [CrossRef]
- Gou, J.; Tang, Y.; Liang, F.; Zhao, Z.; Firsich, D.; Fielding, J. Carbon nanofiber paper for lightning strike protection of composite materials. Compos. Part B Eng. 2010, 41, 6. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 2009, 47, 20. [Google Scholar] [CrossRef]
- Kang, I.; Heung, Y.Y.; Kim, J.H.; Lee, J.W.; Gollapudi, R.; Subramaniam, S.; Narasimhadevara, S.; Hurd, D.; Kirikera, G.R.; Shanov, V.; et al. Introduction to carbon nanotube and nanofiber smart materials. Compos. Part B Eng. 2006, 37, 12. [Google Scholar] [CrossRef]
- Carney, A.; Niezrecki, C.; Buaka, P.; Chen, J.; Niemi, E. High Strain and Deformation Measurements using Imagin and Smart Material Sensors. In Proceedings of Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems; SPIE: Bellingham, WA, USA, 2007; p. 652933. [Google Scholar] [CrossRef]
- Nankali, M.; Nouri, N.M.; Navidbakhsh, M.; Malek, N.G.; Amindehghan, M.A.; Shahtoori, A.M.; Karimi, M.; Amjadi, M. Highly stretchable and sensitive strain sensors based on carbon nanotube–elastomer nanocomposites: The effect of environmental factors on strain sensing performance. J. Mater. Chem. C 2020, 8, 6185–6195. [Google Scholar] [CrossRef]
- Amjadi, M.; Kyung, K.-U.; Park, I.; Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Han, S.; Zhang, X.; Wang, P.; Dai, J.; Guo, G.; Meng, Q.; Ma, J. Mechanically robust, highly sensitive and superior cycling performance nanocomposite strain sensors using 3-nm thick graphene platelets. Polym. Test. 2021, 98, 107178. [Google Scholar] [CrossRef]
- Zhang, Y.; Haghighi, P.D.; Burstein, F.; Yap, L.W.; Cheng, W.; Yao, L.; Cicuttini, F. Electronic skin wearable sensors for detecting lumbar–pelvic movements. Sensors 2020, 20, 1510. [Google Scholar] [CrossRef]
- Taya, M.; Kim, W.J.; Ono, K. Piezoresistivity of a short fiber/elastomer matrix composite. Mech. Mater. 1998, 28, 53–59. [Google Scholar] [CrossRef]
- Johnson, O.; Gardner, C.; Mara, N.; Dattelbaum, A.; Kaschner, G.; Mason, T.; Fullwood, D. Multi-scale Model for the Extreme Piezoresistivity in Silicone/Nickel Nanostrand/Nickel Coated Carbon Fiber Nanocomposites. MetTransA 2011, 42, 3898–3906. [Google Scholar]
- Clayton, M.F.; Bilodeau, R.A.; Bowden, A.E.; Fullwood, D.T. Nanoparticle orientation distribution analysis and design for polymeric piezoresistive sensors. Sens. Actuators A 2020, 303, 111851. [Google Scholar] [CrossRef]
- Wonnacott, A.M.; Bowden, A.E.; Mitchell, U.H.; Fullwood, D.T. Analyzing and Modeling the Dynamic Electrical Characteristics of Nanocomposite Large-Range Strain Gauges. Sensors 2024, 24, 8192. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory, 2nd ed.; Taylor and Francis: Bristol, PA, USA, 1992. [Google Scholar]
- Torquato, S. Random Heterogeneous Materials; Springer: New York, NY, USA, 2002. [Google Scholar]
- Grimmett, G. Percolation, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 321. [Google Scholar]
- Chen, Y.; Schuh, C.A. Diffusion on grain boundary networks: Percolation theory and effective medium approximations. Acta Mater. 2006, 54, 4709–4720. [Google Scholar] [CrossRef]
- Koecher, M.; Yeager, J.; Park, T.; Mara, N.; Fullwood, D.; Hansen, N.; Colton, J.S. Characterization of Nickel Nanostrand Nanocomposites through Dielectric Spectroscopy and Nanoindentation. Polym. Eng. Sci. 2013, 53, 2666–2673. [Google Scholar] [CrossRef]
- Morozov, I.; Lauke, B.; Heinrich, G. A new structural model of carbon black framework in rubbers. Comput. Mater. Sci. 2010, 47, 8. [Google Scholar] [CrossRef]
- Toker, D.; Azulay, D.; Shimoni, N.; Balberg, I.; Millo, O. Tunneling and percolation in metal-insulator composite materials. Phys. Rev. B 2003, 68, 041403. [Google Scholar] [CrossRef]
- Wang, L.; Xu, C.; Li, Y. Piezoresistive repsonse to changes in contributive tunneling film network of carbon nanotube/silicone rubber composite under muli-load/unload. Sens. Actuators A 2013, 189, 45–54. [Google Scholar] [CrossRef]
- Ambrosetti, G.; Grimaldi, C.; Balberg, I.; Maider, T.; Danani, A.; Ryser, P. Solution of the tunneling-percolation problem in the nanocomposite regime. Phys. Rev. B 2010, 81, 155434. [Google Scholar] [CrossRef]
- Hu, N.; Karube, Y.; Yan, C.; Masuda, Z.; Fukunaga, H. Tunneling Efffect in a Polymer/Carbon Nanotube Nanocomposite Strain Sensor. Acta Mater. 2008, 56, 2929–2936. [Google Scholar] [CrossRef]
- Fritzsche, J.; Lorenz, H.; Kluppel, M. CNT Based Elastomer-Hybrid-Nanocomposites with Promising Mechanical and Electrical Properties. Macromol. Mater. Eng. 2009, 294, 551–560. [Google Scholar] [CrossRef]
- Sahimi, M. Critical Exponent of Percolation Conductivity by Finite-Size Scaling. J. Phys. C Solid State Phys. 1983, 16, L521–L527. [Google Scholar] [CrossRef]
- Dalafi, A.; Dalafi, D.; Hadi, I.; Ebrahimi, S.; Jafari, M. Computer Study of critical exponents in two-dimensional systems of circular and sticklike nanoparticles. Comput. Mater. Sci. 2013, 68, 12. [Google Scholar] [CrossRef]
- Hansen, N.; Adams, D.O.; Fullwood, D.T. Evaluation and Development of Percolation Models for Electrical Conductivity in Nickel Nanostrand Polymer Composites. J. Polym. Eng. Sci. 2015, 55, 549–557. [Google Scholar] [CrossRef]
Variable | Optimized Value |
---|---|
s | 0.7918 |
t | 1.0288 |
0.255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usevitch, N.S.; White, E.V.; Bowden, A.E.; Mitchell, U.H.; Fullwood, D.T. Modeling Piezoresistive Behavior of Conductive Composite Sensors via Multi-State Percolation Theory. J. Compos. Sci. 2025, 9, 354. https://doi.org/10.3390/jcs9070354
Usevitch NS, White EV, Bowden AE, Mitchell UH, Fullwood DT. Modeling Piezoresistive Behavior of Conductive Composite Sensors via Multi-State Percolation Theory. Journal of Composites Science. 2025; 9(7):354. https://doi.org/10.3390/jcs9070354
Chicago/Turabian StyleUsevitch, Nathan S., Emily V. White, Anton E. Bowden, Ulrike H. Mitchell, and David T. Fullwood. 2025. "Modeling Piezoresistive Behavior of Conductive Composite Sensors via Multi-State Percolation Theory" Journal of Composites Science 9, no. 7: 354. https://doi.org/10.3390/jcs9070354
APA StyleUsevitch, N. S., White, E. V., Bowden, A. E., Mitchell, U. H., & Fullwood, D. T. (2025). Modeling Piezoresistive Behavior of Conductive Composite Sensors via Multi-State Percolation Theory. Journal of Composites Science, 9(7), 354. https://doi.org/10.3390/jcs9070354