An Investigation into Fe3O4 Nanoparticle-Based Composites for Enhanced Electromagnetic Radiation Shielding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Magnetite Nanoparticles with Chemical Condensation Method
2.2. Synthesis of Magnetite Nanoparticles Using the Liquid-Phase Combustion Method
2.3. Device Characterization
3. Results and Discussion
3.1. Chemical Condensation Method (CCM)
3.2. Liquid-Phase Combustion Method
3.3. Investigation of the Shielding Characteristics of Cement-Based Materials Incorporating Magnetite Nanoparticles Synthesized Through Chemical Precipitation
3.4. Study of the Shielding Properties of Cement Stone with Additives of Magnetite Nanoparticles Synthesized with Liquid-Phase Combustion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goubau, G.; Schwering, F. On the Guided Propagation of Electromagnetic Wave Beams. IRE Trans. Antennas Propag. 1961, 9, 248–256. [Google Scholar] [CrossRef]
- Lee, J.; Kang, H.; Shin, B.G.; Song, Y.J. Cement Composites with Carbon Fiber for Electromagnetic Interference Shielding Applications. Carbon 2024, 220, 118861. [Google Scholar] [CrossRef]
- Taghipour, N.; Whitworth, G.L.; Othonos, A.; Dalmases, M.; Pradhan, S.; Wang, Y.; Kumar, G.; Konstantatos, G. Low-Threshold, Highly Stable Colloidal Quantum Dot Short-Wave Infrared Laser Enabled by Suppression of Trap-Assisted Auger Recombination. Adv. Mater. 2022, 34, 2107532. [Google Scholar] [CrossRef]
- Lapinsky, S.E.; Easty, A.C. Electromagnetic Interference in Critical Care. J. Crit. Care 2006, 21, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Wanasinghe, D.; Aslani, F.; Ma, G.; Habibi, D. Review of Polymer Composites with Diverse Nanofillers for Electromagnetic Interference Shielding. Nanomaterials 2020, 10, 541. [Google Scholar] [CrossRef]
- Jia, X.; Li, Y.; Shen, B.; Zheng, W. Evaluation, Fabrication and Dynamic Performance Regulation of Green EMI-Shielding Materials with Low Reflectivity: A Review. Compos. Part B Eng. 2022, 233, 109652. [Google Scholar] [CrossRef]
- Sankaran, S.; Deshmukh, K.; Ahamed, M.B.; Khadheer Pasha, S.K. Recent Advances in Electromagnetic Interference Shielding Properties of Metal and Carbon Filler Reinforced Flexible Polymer Composites: A Review. Compos. Part A Appl. Sci. Manuf. 2018, 114, 49–71. [Google Scholar] [CrossRef]
- Rubežienė, V.; Varnaitė-Žuravliova, S.; Sankauskaitė, A.; Pupeikė, J.; Ragulis, P.; Abraitienė, A. The Impact of Structural Variations and Coating Techniques on the Microwave Properties of Woven Fabrics Coated with PEDOT:PSS Composition. Polymers 2023, 15, 4224. [Google Scholar] [CrossRef]
- Shi, Y.; Wu, M.; Ge, S.; Li, J.; Alshammari, A.S.; Luo, J.; Amin, M.A.; Qiu, H.; Jiang, J.; Asiri, Y.M.; et al. Advanced Functional Electromagnetic Shielding Materials: A Review Based on Micro-Nano Structure Interface Control of Biomass Cell Walls. Nano-Micro Lett. 2025, 17, 3. [Google Scholar] [CrossRef]
- Wanasinghe, D.; Aslani, F.; Ma, G.; Habibi, D. Advancements in Electromagnetic Interference Shielding Cementitious Composites. Constr. Build. Mater. 2020, 231, 117116. [Google Scholar] [CrossRef]
- Peng, M.; Qin, F. Clarification of Basic Concepts for Electromagnetic Interference Shielding Effectiveness. J. Appl. Phys. 2021, 130, 225108. [Google Scholar] [CrossRef]
- Lan, C.; Zou, L.; Wang, N.; Qiu, Y.; Ma, Y. Multi-Reflection-Enhanced Electromagnetic Interference Shielding Performance of Conductive Nanocomposite Coatings on Fabrics. J. Colloid Interface Sci. 2021, 590, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Yang, S.-H.; Wang, H.-Y.; Wang, G.-S.; Yin, P.-G. Excellent Electromagnetic Wave Absorbing Properties of Two-Dimensional Carbon-Based Nanocomposite Supported by Transition Metal Carbides Fe3C. Carbon 2020, 162, 438–444. [Google Scholar] [CrossRef]
- Kaidar, B.; Imash, A.; Smagulova, G.; Keneshbekova, A.; Kazhdanbekov, R.; Yensep, E.; Akalim, D.; Lesbayev, A. Magnetite-Incorporated 1D Carbon Nanostructure Hybrids for Electromagnetic Interference Shielding. Nanomaterials 2024, 14, 1291. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Chen, F.; Liu, J.; Ma, Q.; Qiao, R.; Xu, Z. Synthesis of MWCNTs/Si3N4 Nanocomposites Via Click Chemistry and Electromagnetic Wave-Absorption Properties. J. Electron. Mater. 2025, 54, 1228–1244. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, N.; Wang, Y.; Zong, M.; Zhu, Y. Construction of Polymer-Derived Double Transition Metal Compound/Carbon Matrix Nanocomposites for Efficient Electromagnetic Wave Absorber. Ceram. Int. 2024, 50, 45416–45426. [Google Scholar] [CrossRef]
- Xia, X.; Xiao, Q. Electromagnetic Interference Shielding of 2D Transition Metal Carbide (MXene)/Metal Ion Composites. Nanomaterials 2021, 11, 2929. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.; Zhou, B.; He, C.; Wang, B.; Feng, Y.; Liu, C. Synergistically Enhancing Electromagnetic Interference Shielding Performance and Thermal Conductivity of Polyvinylidene Fluoride-Based Lamellar Film with MXene and Graphene. Compos. Part A Appl. Sci. Manuf. 2022, 157, 106945. [Google Scholar] [CrossRef]
- Cheng, M.; Xu, X.; Zhang, H.; Kong, S.; Feng, Z.; Meng, F.; Wang, Y. Self-Assembling, Flexible and Stable Aramid Nanofiber/Polypyrrole/MXene Composite Film for Efficient Electromagnetic Interference Shielding, Dual-driven Heating and Infrared Thermal Camouflage. Chem. Eng. J. 2025, 505, 159112. [Google Scholar] [CrossRef]
- Katheria, A.; Das, P.; Nayak, J.; Roy, B.; Pal, A.; Biswas, S.; Das, N.C. MXene and Fe3O4 Decorated G-C3N4 Incorporated High Flexible Hybrid Polymer Composite for Enhanced Electrical Conductivity, EMI Shielding and Thermal Conductivity. Next Mater. 2025, 6, 100292. [Google Scholar] [CrossRef]
- Oraby, H.; Tantawy, H.R.; Correa-Duarte, M.A.; Darwish, M.; Elsaidy, A.; Naeem, I.; Senna, M.H. Tuning Electro-Magnetic Interference Shielding Efficiency of Customized Polyurethane Composite Foams Taking Advantage of RGO/Fe3O4 Hybrid Nanocomposites. Nanomaterials 2022, 12, 2805. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Li, R.; Wang, Z.; Lou, Z.; Li, Y. Facile Synthesis of Ultralight and Porous Melamine-Formaldehyde (MF) Resin-Derived Magnetic Graphite-Like C3N4/Carbon Foam with Electromagnetic Wave Absorption Behavior. Crystals 2020, 10, 656. [Google Scholar] [CrossRef]
- Michałowska, A.; Kudelski, A. The First Silver-Based Plasmonic Nanomaterial for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy with Magnetic Properties. Molecules 2022, 27, 3081. [Google Scholar] [CrossRef]
- Yang, C.; Li, K.; Hu, M.; Li, X.; Li, M.; Hu, X.; Li, Y.; Huang, Z.; Meng, G. Flexible ZrO2/ZrB2/C Nanofiber Felt with Enhanced Microwave Absorption and Ultralow Thermal Conductivity. J. Mater. 2025, 11, 100988. [Google Scholar] [CrossRef]
- Wu, F.; Hu, P.; Hu, F.; Tian, Z.; Tang, J.; Zhang, P.; Pan, L.; Barsoum, M.W.; Cai, L.; Sun, Z. Multifunctional MXene/C Aerogels for Enhanced Microwave Absorption and Thermal Insulation. Nano-Micro Lett. 2023, 15, 194. [Google Scholar] [CrossRef]
- Hou, T.; Wang, B.; Jia, Z.; Wu, H.; Lan, D.; Huang, Z.; Feng, A.; Ma, M.; Wu, G. A Review of Metal Oxide-Related Microwave Absorbing Materials from the Dimension and Morphology Perspective. J. Mater. Sci. Mater. Electron. 2019, 30, 10961–10984. [Google Scholar] [CrossRef]
- Lesbayev, A.B.; Smagulova, G.T.; Kim, S.; Prikhod’ko, N.G.; Manakov, S.M.; Guseinov, N.; Mansurov, Z.A. Solution-Combustion Synthesis and Characterization of Fe3O4 Nanoparticles. Int. J. Self-Propagating High-Temp. Synth. 2018, 27, 195–197. [Google Scholar] [CrossRef]
- Lesbayev, A.; Elouadi, B.; Borbotko, T.; Manakov, S.; Smagulova, G.; Boiprav, O.; Prikhodko, N. Influence of Magnetite Nanoparticles on Mechanical and Shielding Properties of Concrete. Eurasian Chem. J. 2017, 19, 223. [Google Scholar] [CrossRef]
- Boiprav, O.V.; Bogush, V.A. Lightweight microwave absorbers with loop-like surface irregularities based on foiled materials for anechoic chambers. MOMENTO 2024, 1–16. [Google Scholar] [CrossRef]
- Boiprav, O.V.; Bogush, V.A. Advanced Layered Flexible Radio-Absorbing Materials Based on Powdered Charcoal. Inorg. Mater. Appl. Res. 2024, 15, 280–288. [Google Scholar] [CrossRef]
- Hasanov, M. The development of a piezoelectric defect detection device through mathematical modeling applied to polymer composite materials. New Mater. Compd. Appl. 2024, 8, 62–74. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Liu, D.; Wang, Y.; Zhang, X.; Wen, G.; Zhang, X.; Huang, X. Carbon-Coated Octahedral Fe3O4/Fe2O3 Nanocomposites for Enhanced Electromagnetic Wave Absorption. ACS Appl. Nano Mater. 2025, 8, 2952–2964. [Google Scholar] [CrossRef]
2-Theta (deg) | D (ang.) | Height (cps) | FWHM (deg) | Int. I (cps deg) | Phase Name |
---|---|---|---|---|---|
18.50(4) | 4.791(11) | 71(24) | 0.65(14) | 65(14) | Fe3O4(111) |
30.08(3) | 2.969(3) | 481(63) | 0.58(3) | 354(22) | Fe3O4(2.2.0) |
35.521(14) | 2.5252(9) | 1876(125) | 0.569(13) | 1530(25) | Fe3O4(3.1.1) |
43.21(4) | 2.0922(18) | 474(63) | 0.56(4) | 364(21) | Fe3O4(4.0.0) |
53.60(10) | 1.708(3) | 201(41) | 0.72(10) | 220(23) | Fe3O4(4.2.2) |
57.15(4) | 1.6104(10) | 701(76) | 0.61(3) | 641(20) | Fe3O4(5.1.1) |
62.69(3) | 1.4809(6) | 1008(92) | 0.68(2) | 943(24) | Fe3O4(4.4.0) |
71.30(7) | 1.3217(12) | 66(23) | 0.9(4) | 101(24) | Fe3O4(6.2.0) |
74.16(12) | 1.2776(18) | 214(42) | 0.78(19) | 326(30) | Fe3O4(5.3.3) |
Stoichiometric Ratio | LXRD, nm | SBET (m2/g) | DBET, nm | Carbon Content, % |
---|---|---|---|---|
Fe(NO3)/C6H8O7, 1:1 | 20 | 72.203 | 16 ± 1 | 24.37 |
Fe(NO3)/C6H8O7, 1:1.5 | 18 | 22.240 | 51 ± 2 | 32.70 |
Fe(NO3)/C6H8O7, 1:2 | 13 | 9.204 | 125 ± 4 | 38.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesbayev, A.; Akalim, D.; Kalauov, B.; Yerezhep, D. An Investigation into Fe3O4 Nanoparticle-Based Composites for Enhanced Electromagnetic Radiation Shielding. J. Compos. Sci. 2025, 9, 226. https://doi.org/10.3390/jcs9050226
Lesbayev A, Akalim D, Kalauov B, Yerezhep D. An Investigation into Fe3O4 Nanoparticle-Based Composites for Enhanced Electromagnetic Radiation Shielding. Journal of Composites Science. 2025; 9(5):226. https://doi.org/10.3390/jcs9050226
Chicago/Turabian StyleLesbayev, Aidos, Doszhan Akalim, Bakhytzhan Kalauov, and Darkhan Yerezhep. 2025. "An Investigation into Fe3O4 Nanoparticle-Based Composites for Enhanced Electromagnetic Radiation Shielding" Journal of Composites Science 9, no. 5: 226. https://doi.org/10.3390/jcs9050226
APA StyleLesbayev, A., Akalim, D., Kalauov, B., & Yerezhep, D. (2025). An Investigation into Fe3O4 Nanoparticle-Based Composites for Enhanced Electromagnetic Radiation Shielding. Journal of Composites Science, 9(5), 226. https://doi.org/10.3390/jcs9050226